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STRESS INTENSITY FACTORS AT THE TIPS OF KINKED AND FORKED CRACKS

B. A. Bilby, G. E. Cardew and I. C. Howard*

oy

INTRODUCTION

Amongst the fundamental problems that fomm the theoretical basis for studies
of the paths of crack propagation and of the stability of cracks are the
problems of the elastic fields around a long or semi-infinite crack with
either a single kink or a fork at its tip (to discuss the onset of deviation :
or branching, the case where the main crack is long is of most interest). g
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We present here briefly some of our computations of the relevant stress
intensity factors for these two problems. A number of workers have con- o
sidered problems of this kind; for some references, see [1 - 10]. In 3
making available our own results, which sometimes differ from those pre- ;g
viously published by other workers, we hope to contribute to an ultimate
consensus of agreement, for these problems have a considerable history of
published error, some of which has been acknowledged. In the text we give
some indications of why we think this has come about,

THE KINKED CRACK

We image that a semi-infinite crack has, at its tip, a kink of unit length
making an angle a with the main crack (Figure 1). The loading is specified
by the stress intensity factors K; and K2 of the main crack without the
kink. The analysis of [14] enables the stress intensity factors k, and k2

at the tip of the kink to be computed in terms of K, and K2 by quadratures.
We find [1]:

A o

Ki = Kii1(a) Ky + Kip(a) K (1)

k2 = Ka1(0) Ky + Kyp(a) Ko (2)

where the functions Kij(a) are displayed in Figure 1. (A table of Kj;(a)
allowing interpolation to within 1% accuracy is available upon reques%

to the authors). We have checked the accuracy of the numerical procedures
whereby Kij(a) are computed, and we believe that the results upon which
Figure 1 i5 based are an accurate solution to the problem. Where compari-
sons can be made, we agree with the results of Chatterjee [5], but disagree
slightly with [2]. The appropriate curves in our Figure 1 and the Figure 4
of [2] look very much the same, but our results differ from those of [2] by
as much as 20%. We are unable to explain this difference on the basis of
an error in our calculation, and suggest that the method of conformal
transformation used in [2] may be less reliable than is usually supposed.
This supposition is partly born out by the difficulties we experienced in
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attempting to make a related method work for the problem of the forked
crack.

THE FORKED CRACK
We have solved this problem by two methods.

(a) Firstly, we used a method of conformal transformation which maps a
finite crack with a forked tip into the unit circle. The appropriate

stress functions are found by inverting an infinite system of algebraic
equations, and we found that the simplest formulation of the problem was that
of [9]. Although the method produced results which agree qualitatively

with those of [2] we had to do very large amounts of computation to achieve
them, and we suspect that the rate of convergence of the method was slow
enough for simple numerical rates of convergence to be misleading.

(b) Secondly, we represented the cracks by continuous distributions of
dislocations and we solved the resulting singular integral equations by a
method similar to that reported in [11]. All our attempts to represent a
semi-infinite crack by a continuous distribution of dislocations were
unsatisfactory, and so we performed the computations for a finite, but long,
main crack. Figure 2 shows the normalized stress intensity factors k1/K1,
k,/K, at the tip of the upper fork when the main crack is 40 times as long
as the kink. Ki is the stress intensity factor at the tip of the main crack
without the kink. Our method is numerically unstable for small o, and we
have no reliable results, as yet, for 0> < a< 5.

The most important feature of Figure 2 is the zero of k; at about 18°,
slightly larger than the value read from Figure 14 of [2]. The existence
of this zero is used in theories of the crack forking which occurs both
with fast moving cracks [12], and in stress corrosion [2]. This zero
appears to arise because of the presence of the fork, and the computations
of Kalthoff [12] for a fork without a main crack clearly show its presence.
A recent paper [10] reports the results of computations on 2 forked crack
where the main crack is four times the length of a fork; k2 has no zero.
We have repeated out computations for this garticular geoemtry and clearly
discern a zero somewhere between 10° and 20°. Finally, we note that our
Figure 2 disagrees with the results of [4]. We believe that this is be-
cause the formulation of the problem given in [4] is incorrect. We find
that proper application of the boundary conditions leads to a coupled
pair of Wiener-Hopf equations, rather than the separated equations of the
authors. The point is a subtle one and has not been noticed by a recent

reviewer [13].
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Figure 2
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