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STRESS DISTRIBUTION IN A CRACKED BIMATERIAL PLATE

T. S. Cook* and D. M. Tracey**

INTRODUCTION

Previous work in the analytical study of composite materials containing
cracks has tended to emphasize the calculation of stress intensity factors,
[1 - 8]. While the stress intensity factor is very useful in characteri-
zing fracture behaviour, an understanding of the often complex failure
process in composites necessitates an examination of the complete stress
and displacement fields in the cracked bodies. Since many specialized
analytical techniques do not produce field solutions, the authors used a
finite element approach to determine the stress distribution in a cracked
inhomogeneous plate. The approach employs a generalized crack tip sin-
gularity element and provides a basis for obtaining field solutions to a
wide class of problems of nonhomogeneous bodies containing cracks.

FINITE ELEMENT STRESS ANALYSIS

The problem the authors considered is an elastic strip of length 2h and
width b, shear modulus p;, and Poisson's ratio v;, joined along its

length to a second elastic strip of the same size but with properties u,,
Va. The bond connecting the two materials is considered perfect. Material
1 contains a crack of length 2a perpendicular to and terminating at the
material interface. The crack is opened by uniform pressure.

The key analytical feature of the problem is that the stress field in the
neighbourhood of the bondline crack tip is given by:

£..(©®
rij(r,@) = —%lj—x-+ higher order terms (1)
T

where A is a function of the modulus ratiom = up/u;, and also the type of
planar deformation (plane stress or plane strain). For the homogeneous
case, m = 1, A equals 1/2. Form < 1, A < 1/2 and for m > 1, A > 1/2.
Thus the singularity becomes more severe as the value of uncracked mater-
Lal/cracked material modulus ratio decreases. The stress form (1) implies
that near tip displacement variations are as . The nature of the
dependence of A upon m can be understood by considering cases with iden-
tical u, values, but different H2 values: As U, (and thus m) decreases
the constraint against crack opening decreases, particularly near the
bond, thus allowing an increasingly severe singular opening gradient from
the bondline tip. Equation (1) applies to the crack tip embedded in
material 1 and there A takes the value 1/2
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I'he details of the finite element approach used for this singular problem
have been described elsewhere [9]. Briefly, the element chosen to repre-
sent (1) is a generalization of the singular element suggested for the
analysis of the vr elastic crack tip singularity [10]. The element is a

5 node triangle and has one of its nodes at the singular point. The power
form variation of displacement r? is chosen in the direction away from the
singular point, low order smooth variation is chosen in the angular direc-
tion. A number of these elements encircle each crack tip. At the embedded
tip the vr variation is modelled. At the bondline tip, the appropriate
value of A is used for the singularity elements, and the elastic properties
of the elements are either those of materials 1 or 2.

The specific example chosen has the crack length, plate width, and height
related by a/b = a/h = 1/9. Bilinear isoparametric elements were used to
model the plate away from the singularities. The total mesh involved 429
nodes and 433 elements. The forces specified to be acting on the crack
face nodes were calculated, in terms of the uniform pressure p, consistent
with the element shape functions. Thus, having used singularity elements
with a radial dimension of a/100, the singularity element node on the
crack face had an applied normal force per unit thickness equal to .01
pa/(l + A).

I'he left end of the crack is surrounded completely by one material and is
a singular point with displacement varying as ' The bondline crack
tip has a singularity dependent upon the bimaterial elastic properties.
The first example here is plane strain and the material combination is
aluminum-epoxy. For aluminum p = 3.846 x 10° psi, v = 0.3; and for epoxy
B o= 0.1667 x 10° psi, v = 0.35. With aluminum as the cracked material

m = pp/Y; = 0.043 and A = 0.1752. When epoxy is the cracked material

m = 23,08 and A = 0.6619.

lhe stress ahead of the crack represents the potential for cleavage and
Figure 1 shows the normal stress, Tyy(© = 0), ahead of the crack for

m = 25.08 and 0.043. A comparison is shown between the results for the
singular integral equation method of [7] and the finite element results;
the finite element points show excellent agreement with the integral
equation results. The figure demonstrates the singular behaviour of the
stress as the crack tip is approached. More importantly, it shows the
dependence of the stress singularity on the shear moduli. For a crack in
a homogeneous material, the normal stress ahead of the crack falls to a
value equal to the pressure on the crack surface at a distance r/a = 0.19
from the crack tip. For the two cases shown in Figure 1, tyy/p = 1.0 at
r/a = 0.24 and 0.04 for m = 23.08 and 0.043 respectively. These differences
reflect the constraint ahead of the crack. For m > 1, the stiffer mater-
ial 2 provides increased constraint to crack opening which results in a
higher stress near the bondline. Conversely, when the crack is in the
aluminum, the lack of constraint ahead of the tip allows very rapid
opening of the crack and lower stresses ahead of the tip. At distances
removed from the bond, the influence of the inhomogeneity is naturally
much less but it does affect the extent of the compressive zone along

O = 0. As expected, Tyy/p changes sign at a smaller value of r/a for

m = 0.043 than for m = 23.08.

Figure 2 gives the normal stress distribution Tyy/p about the crack tip
as a function of O for r/a = 1/200. Specifically, it gives the effect of
the material inhomogeneity on the stress distribution for 0 < O < 180°.
The stress component Tyy is discontinuous across the bond, at O = 90°,
for nonhomogeneous materials and shows enormous increases as the bond is
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crossed when m < 1. The figure indicates that the stiffer material
carries most of the load whether m > 1 or m < 1 and thus would tend to
dominate failure. In fact, for m > 1, the relatively small change in
ryy(Q) in the range 0 < O < 90 indicates that a crack would tend to
propagate through the bond and move in a Mode I fashion. On the other )
hand, the very high Tyy/p for m < 1 indicates the possibility of a tensile
crack parallel to the existing crack in material 1.

The asymptotic value of the stress (the first term of (1)) is plotted in
Figure 2 for comparison with the finite element results for m = 1.0. The
finite element value is slightly smaller than the asymptotic value through-
out the entire range; however, the disagreement is small.

When a propagating crack reaches the bond, it can, in addition to reflect-
ing back into material 1 or propagating through into material 2, cause
debonding along the boundary joining the two plates. An examination of

the normal and shear stress along the bond as a function of shear modulus
ratio indicates that tensile failure of the bond will not occur for m < 1
as Txx is compressive everywhere on the bond. For m > 1, the normal ten-
sile stress, Txx, 1s very high but quickly becomes negative, indicating
that a tensile crack would be unable to propagate along the bond. However,
the shear stress retains the same sign for all m and so a shear crack,

once initiated, would probably propagate along the bond.

CONCLUSION

The finite element method with the incorporation of special singularity
clements provides a useful tool for the evaluation of crack opening dis-
placements and the stress distribution for a crack in a bimaterial plate.
The method thus has wide potential for determining field solutions for
other problems involving cracks in composites which cannot be handled by

either conventional finite element methods or present analytical techniques.
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Figure 1 Normal Stress Distribution Ahead of the Bondline Crack Tip H
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Figure 2 Angular Variation of Normal Stress About Bondline Crack Tip
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