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STRESS AND CRACK-DISPLACEMENT INTENSITY FACTORS IN ELASTODYNAMICS

H. D. Bui*

This paper deals with several remarks concerning stress-intensity factors
in elastodynamics, for the steady-state and the transient problems of a
moving crack with a constant velocity V. It discusses the equivalence
between dynamic fracture criterions and introduces the new J-integral for E
moving crack. The present paper will bring out the same importance of the :
stress-intensity factor and the crack-displacement intensity factor, in
the presentation of fracture criterions.

In the plane strain condition, the components of the displacement fields
u,v, with respect to the fixed cartesian axes Oxy, can be expressed in
terms of two scalar functions 9(x,y,t) and Y(x,y,t) which satisfy respec-
tively the two-dimensional wave equations with velocities cL={(A+2u)/p}”2
and ¢ ={n/p}"® where A,p are the elastic Lamé's constants and p is the
mass density. Expressions of the displacement and the stress fields in
terms of ¢ and Y or their well known complex representations can be found
in [1]. We introduce the velocity parameters:

THE STEADY-STATE PROBLEM

The steady-state problem of a moving crack with constant length has solu-
tions which can be found in [1]. The load is assumed to be symmetric with
respect to the crack line Ox. In the moving axes x'sx-Vt, y'=sy with
polar coordinates, r,8 the displacement and stress fields near the crack-
tip are known. We report here only the expressions for v and Oyy With a
change on notations from those given in [1]:
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Equations (1) and (2) are Yoffé's work [2]. Instead of Ky, introduce the
notations Kj for the dynamic stress-intensity factor. It is defined as in

the static case by the asymptotic expression of the normal stress Oyy(8=0):

a . U2
K; = lim o r,o) (2nr
I ro YY( U ) (3)

If we represent the crack-opening displacement v(r,m) by similar formula
known from the plane strain static case, we must introduce a crack-
displacement factor:

v .o2u fom\2
KI = iiﬂ ;:T-<;—) v(r,m) 4)

where x=(A+3u)/ (A+u)=3-4v (v = Poisson ratio). From (1)-(4) it results:

2
& )0 . A B1(1-82)
I I 7 x+l 22 (5)
48182~ (1+B83)

This ratio varies monotonically from unit, at V=0, to infinity at the
Rayleigh velocity crR (defined by the vanishing of the denominator of (5)).

A TRANSIENT PROBLEM

Let us consider the particular problem of a small cut which extends sym-
metrically with the velocity V. The crack tip's coordinates in the fixed
axes are x=Vt, y=0 (and x=-Vt, y=0). The crack is subject to opposite
normal impulses ny=5(x)6(t). This problem is solved by Afanasev and
Cherepanov [3] who' gave the stress-intensity factor, as defined by equa-
tion (3) in the following form:

K = —S(l/V)V”Z(V_Z—cI:Z)_“z(c,}z-cL_z)_l — (6)

2t 3212
where:
S(1) = (C-z_sz)z + 4 TZ(C-Z-TZ)IQ(C-Z-TZ)”Z
T L T
Here, the Rayleigh velocity is defined by the root of the equation
S(1/V)=0. Afanasev and Cherepanov did not calculate the crack displace-

ment factor. But from their solution, we may obtain the latter quantity
as:

v = 2 yru2~2. -2 -2 -y 1
kI(t) ol \" CT (cT cL ) T (7)

From (6) and (7) the ratio K¥/K? is found to be the same as in the steady-
state case. This agrees with the general result obtained by Achenbach
and Bazant [4] who stated that the near-tip fields are of the same form
for steady-state and transient crack-propagations. The result (5) can be
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found in many works. Here, we only introduce new notations and terminol-
ogies in order to make more distinction between the two intensity factors.
Remark that for V=cR, the stress-intensity factor (6) vanishes, while the
crack-displacement factor (7) does not. So, the latter factor has some
importance on the characterization of the crack-tip just when the notion
of stress-intensity factor falls.

SOME REMARKS ON FRACTURE CRITERIONS IN SYMMETRIC LOADING

In the static case, the usual criterions can be reduced to the Ky crit-
erion. Whatever is chosen as a criterion, the stress criterion, the COD
criterion, the G-theory and the J-integral are equivalent. Let us state
that the equivalence between two criterions means that the relationship
between their critical values involves only the material's properties,
not the velocity dependence. For example, the equation JIC=(1—v2)K%C/E
(E: Young modulus) establishes the equivalence between the J-integral and
the Ky criterion, for opening mode in static case. In dynamic crack-
propagation, we can see that the K1 criterion has no equivalence with the
usual other criterions. As a first example, suppose that the critical
value K?c is a material constant independent of the velocity, then

the value K1 computed from K?C throughvequation (5) is not, and vice
versa. Thus, the criterions K? and Ky are not equivalent in the sense
stated above.

Let us consider other parameters.
The G-parameter is defined by the Griffith's energy balance (See Erdogan
[S] and Achenbach [6]):

Gda = -SW + 6WF - OW

elas n - dl (8)

ki

where Sa=Vdt, SWelas is the elastic energy variation, SWF is the work done
by given external forces, SWkin the kinetic energy variation, and D the
dissipative energy rate in fracture. For brittle material: D=y (Specific
surface energy). The computation of the left side of equation (8) requires
the knowledge of the dynamic fields in the whole body. If G has a
representation by mean of some path-independent integral, the computation
would be possible with the near-tip fields. If not, the direct computation
of G is not easy. Nevertheless, the relationship between G and K{ is
expected to involve the velocity dependence

The G'-parameter is the crack-closure energy (See [5] and [6]):

G' = 1lim .. f oyy(a) v(a+da) ds 9)

sa»o 26a
crack

This parameter is obviously easy to compute once the near-tip fields (1)
and (2) are known. It may be obtained as:

ey = ¥

1- o v
g KL (0K (1) (10)
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With different notations, equation (10) can be found in Atkinson and
Eshelpy [7], in Freund (8] and also in [4]. The interpretation of (9) as
the dlssipgtive énergy rate is given in [5]. (See in the latter reference
§he comparison between G' and the strain energy release rate Go= -dWgj,s/da;
in dynamic crack-propagation G'#Gg). We remark again that the fracture
crltgrions based upon G,G' or any other parameter derived by the energy's
con51qeration are not equivalent to the stress criterion, due to the
velocity dependence. For example, if the critical value G' is independent

of t?e velocity, the value Ki. computed from G¢ through equation (1) is
not.

;n what follows, we consider another parameter given by a path-independent
integral.

THE J-INTEGRAL FOR MOVING CRACK

Let us.consider the fixed axes 0xj (x1=x, x2=y, u,=u, uz=v). The con-
servation law given by Fletcher [10] is:

o (Ph.u, ) + 0 W-2oaa)s | =0
3t 50,10 T ) 7Y,1%; T2 P Pux( T 1

yhgrg W is the elastic energy density, uj=9u;j/dt. Consider a contour Ty
jolning two points on opposite sides of the crack's surface while going
around the tip, and moving with the velocity V, and let A(I') be the area
within the contour Iy. The Rice's J-integral [11] is extended to moving
crack in transient loading as follows:

1 o d .
J = - _ 1 d_
/{Wnl Ojknkuj,1 = puhuhnl}ds + dtfpujuj,ldw
Iy A(T)

f puJ.uJ.JIan ds (12)

SA

where nj is the unit outward normal to the contour and d/dt is the time
dgrivative of integral over moving domain A(T). The J-integral is not a
llpe ?ntegral, due to the second term. However, it results from (11) that
J is independent of the path. The value of the J-integral may be obtained
by a contour flattened on the crack line. It is easy to see that only the
second singular term in the first integral contributes to J. Thus, it is
sufficient to consider the near-tip fields (1) and (2) for the computation.
For the steady-state case, we find a very simple formula:

_1-v: oy
J = B KI KI (13)

<

"In fact, for some material, the experimental value of Kic depends on the
ve}ocity [9]. This raises the question as to the validity of the K1
criterion in such a case. Perhaps, a better choice would be some para-
meter X such that the theoretical ratio X/K1 multiplied by Kic(V) has a
nearly constant value.
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Equation (13) is the generalization of that obtained by Rice for his J-
integral in the static opening mode. It has the same form as equation (10).
Consequently, there is equivalence between the G' and the J criterions.

The result (13) is exactly the flux of energy into the crack tip, as
discussed in [6], [7] and [8].

It should be noted that equation (13) can be extended to transient crack-
propagation by the use of the near-tip fields obtained by Achenbach and
Bazant. Another proof of the above extension to transient loading can be
found in [12].
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