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STATISTICAL CONSIDERATION ON INHOMOGENEITY OF
MECHANICAL PROPERTIES OF MATERIALS

Y. Kishino*

INTRODUCTION

Recently, various theories of continuum mechanics have been published to
take the microscopical inhomogeneity of materials into account [1 - 4].
Mechanical quantities appearing in such theories are macroscopic usually
and they are considered as averages of the actual quantities distributed
inhomogeneously in materials. However, it does not seem that the deriving
processes of such average quantities are sufficiently discussed. This
paper is concerned with a fundamental consideration of the principle for
averaging the inhomogeneous mechanical quantities distributed sta-
tistically in materials. A method to obtain mean quantities is introduced
by using the internal work done by the inhomogeneous stress acting upon a
closed surface of a small region in the material body. Some properties of
mechanical quantities derived through the above process are discussed, and
it is attempted to argue the relation between the inhomogeneity of stress
and the yielding of materials. It is assumed here that the statistical
characteristics of distribution of mechanical inhomogeneity are uniform

at any place in a material and that the material is considered homogeneous
from the macroscopic viewpoint.

AVERAGING OF MECHANICAL QUANTITIES

Stress and strain in continuum mechanics are regarded as mean quantities
determined (explicitly or implicitly) through certain averaging processes,
as is indicated by their definitions. A mean field quantity is averaged
over a certain region in the material body. As far as the mean quantity is
expected to be expressed in tensorial form, the averaging process is to be
such that it maintains tensorial significance. It is known that this re-
quirement is satisfied when the averaging is carried out isotropically.1

In this paper, the sphere R with a radius p (surface area: A, volume: V)
is adopted for the region upon which the mechanical quantities are averaged.

The increment of the internal work per unit volume of R due to the incre-
ment of the displacement Du is given by

2
Dw = = § tn * Du da (1)
aR

where tn is the stress acting on a surface element of R with unit normal
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1. It is considered that averaging of a tensor over open surface which
appears in [1, 2] does not fully satisfy this requirement.
2. In this paper the body force is ignored for brevity.
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n. Quantities tn and Du are generally regarded as inhomogeneous microscopi-
Ehlly. In terms of the stress tensor o and the increment of the strain
tensor (including the rotation) Dy, quantities tn and Du are given respec-
tively by

tn=n - 0+ Atn (2)

Du = r « Dy + A(Du) (3)

where quantities to which the symbol A is attached denote residuals from
mean values and r is the position vector from the center of R. Now the )
mean quantities ¢ and Dy are regarded as constant in the following averaging
process. It is considered that the expected values of the components of

J and DY are obtained at the vicinity of the center of R when the work done

by the residual parts

A(Dw) = & & Atn + A(Du)da (€))]

SR

<~

is not dependent on the mean quantities 0 and Dy. This equation is trans-
formed as

A(Dw) = %faR (tn-n + 9) + (Du-r * Dy)da , (s)

using equations (2) and (3). By differentiating the right hand side Qf
equation (5) with respect to each component of g and Dy, and by equating
these expressions to zero, we obtain

1
9=yf rtnda (6)
IR
Dy=—l-f n Du da (7)
2L 55 Vv & — —
aR

where products of two vectors without intermediate symbol denote and:
In the derivation of the above two equations, the following relation is
used:

# nrda=VI (8)
3R

where I is the unit tensor. Equations (6) and (7) are also obtained by
the least squares method applied for vectors tn and Du. Namely, g and Dy
expressed by these equations give the minimum values of

I, =4 Atn - Atn da 9
OR
and
I =4 A(Du) - A(Du)da (10)
TR

respectively. Furthermore, for these quantities the equation
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Dw = o =« Dy + A(Dw) (11)

holds, where the symbol -+ denotes the double inner product. Equation (11)
represents the independence of the work done by the mean quantities and the
work done by the residuals. .

The magnitude of A(Dw) is affected by the size of R. As it is assumed that
statistical characteristics of inhomogeneous distribution of tn and Du are
uniform at any place in material, the value of integral - -

£ Atn - A(Du)da = A(Dw) V (12)
R

may be regarded as proportional to A in the case where the distributions
of the stress and the strain are macroscopically uniform. Thus the magni-
tude of A(Dw) is inversely proportional to P. On the other hand, when the

coefficients 0 and Dy increase as the size of R increases. From the above
consideration, the most reasonable tensor quantities maybe obtained by use
of a sphere with a certain radius and regarded as the macroscopic quantities
at the center of the sphere. In the following, p is assumed to be constant

throughout the material body.

FIELDS OF MECHANICAL QUANTITIES

If a stress field is given by microscopically differentiable continuous
stress tensor o* and the equilibrium condition

Veor=0 (13)

is fulfilled, equation (6) is transformed as
g = éf I(n * o*)da
9R

1 1
Sy S A g [ Vo d
¥y v./};

= éf o* dv . (14)
R

Thus it is seen that 0 is a volume average of o*. Then 0 becomes a tensor
which satisfies the equilibrium condition as shown below.

V-o=V-(%fc*dv)=lj’v-o*dv=0. (15)”
-t _ — —_ v - ——

R R

If Du is differentiable and continuous, equation (7) is transformed as

D1=%f nD}ida=-\17f2DEdv=Z(éngdv). (16)3
R R R

3. The commutability of the nabla V and the averaging operator %-J‘ dv is

assured because the region R should be considered to move togetﬁer with
the concerning material point while the shape of R itself is kept con-
stant for all points.
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This equation indicates that Dy is regarded as the strain tensor derived
by differentiation of a displacement vector which is obtained as a volume
average of Du. Thus Dy satisfies the following compatibility equation?:

YxDy=0. (17)

Even if the mean quantities satisfy the macroscopic field equations as
stated above, the residual part of work

A(DW) = Dw - g ** DY (18)

takes a finite value generally, and it may be said that the work done by
microdeformations defined in the generalized continuum theories [4] is
corresponding to this part of internal work.

Now let a plastic deformation takes place in a material body in which mag-
nitude and direction of the stress vector acting on each point of the
spherical surface are assumed as constant. Then the following moment is
produced:

Dm=%f tn x Du da

3R
=0 x Dy + A(Dm) (19)
where
A(Dm) = & Atn x A(Du)da . (20)
3R

As Dm is the total moment acting on R, it can be equated to zero and we
obtain

g * xDy=-A(Dm) . (21)

The above equation indicates that the moment related to mean quantities

does not vanish unless the residual part of moment equals to zero. This {
conclusion seems to be significant, because the plastic deformation of 5
an inhomogeneous material needs not to satisfy the St. Venant's assumption i
stating that principal directions of stress tensor and increment of strain

tensor coinside. It may be possible to consider that A(Dm) is produced {
by the couple stress [4]. Using such a theoretical model we can derive i
and eigen equation [6] which is very similar to the equation appearing in

the Kondo's theory of yielding [3] in which the yielding is analyzed as

analogus phenomenon to the buckling of plates.

It is noted that A(Dw) and A(Dm) are; given respectively, by the trace and
the antisymmetric part of the following tensor

4. When differentiability (and/or continuity) of Du is not guaranteed,
Dy does not generally satisfy equation (17), and a material space
after such an incompatible deformation becomes a material manifold
with the teleparallelism [5].

404

Part V - Analysis and Mechanics

T=Ld Ao ADu)da . (22)

This tensor denotes covariances between random variables in the statistical
terminology.

INFLUENCE OF INHOMOGENEITY ON YIELD CRITERION

Let us begin with the consideration on von Mises' yield criterion

g' «+ g' = k? (23)

where k% is a constant and 0' is the stress deviation defined in terms of

the mean stress p and unit tensor I as

o' =g-pl. (24)

The expression g' < o' is considered as a measure of variation from the
mean stress. This measure may be acceptable particularly when the dis-
tribution of stress is assumed to be homogeneous. However, when the in-
homogeneity of stress distribution is taken into account, the extended
yield criterion may be written as

%fg (tn - pn) - (tn - pn)da = K? (25)
R

where K* is a constant. The intensity of stress in yield criteria is
usually given in terms of relative values to the initial state where the
external forces are absent, and further it is generally considered that
the initial stress exists in inhomogeneous materials. Thus tn given by
equation (2) and the mean stress p are expressed as -

tn=n - (9o + 0) + Atno + Atn (26)

p=%£" (@0 + 9) (27)

where quantities to which a suffix o is added represent initial quantities.
Substitution of equations (26) and (27) into equation (25) gives

K2 = é (g'o ¥ gy +Zga ee gh o+ gl we a') +
s
+ ng (Atng + Atng + 2Atng - Atn + Atn + Atn)da. (28)
R

Equation (28) is generalized yield criterion in which the initial stress
and the microscopical inhomogeneity of stress are taken into account.

Now a simple case where o', is zero while Atng is not equal to zero is

considered. Further the following two assumptions may be laid down from
the physical consideration.
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(Assumption 1) Statistically, the residual stress Atn acts in such a way

that the inhomogeneity of initial stress increases when p > 0 (tensile
state) and decreases when p < 0 (compressive state).

(Assumption 2) Mean value of the inner produce Atn + Atn increases together
with o =+ O.
For brevity, replacing these assumptions by linear relations as
i—f Atng ¢ Atn da = cp (29)
© oR

%j‘ Atn - Atn da = cp 0 ** O . (30)
oR

Then we obtain

G' s+ ' =Cy - Cop - Csp? (31)
where
G = —>— (k% - L5 stny - atng da)
17 1+3c, AT g = =
(32)
_ 6C1 _ C2
C2 = 133, ¢ Cs = 133,

These coefficients are considered as material constants determined by

the initial stress distribution. It is noticed that C, takes the smaller
value as the amount of inhomogeneous initial stress increases. If we

put as C2 = C3 = 0, we get von Mises' equation (23), and on the other hand,
equation (31) reduces to Griffith type equation for two axial stress state
in the case where C3 = 0.

CONCLUDING REMARKS

The macroscopic field quantities appearing in ordinary continuum mechanics
are considered to be derived through such an averaging process as stated
here. In this paper, the examples of measures of deviation from these

mean quantities are given in the forms of the right hand sides of equa-
tions (9), (10), (22) and (28). As indicated in the preceding sections,
such quantities seem particularly important to explain nonelastic behaviours

of materials.
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