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SELF-SIMILAR PRESSURE PROFILES IN THE SYMMETRICALLY EXTENDING PLANE CRACK

Finn Ouchterlony*

INTRODUCTION

Much of the author's recent work has involved Fracture Mechanics analysis
of rock destruction. In one case, the different stages of the breaking
process in rock blasting were modelled by various static radial crack
systems in [1]. Another case, which prompted the work in [2], is the

wave effects, crack branching phenomena, and the crack propagation speed.
This note concerns the latter part. It is based on the author's report [3]
and illustrates the effects of gas penetration on the energy release rates
at the tips of a symmetrically extending plane crack.

Since the advent of Broberg's analysis [4] many papers on self-similarly
extending cracks in elastic media have appeared, see for example [5 - 12]
for in-plane situations. The papers by Willis [7] and Norwood [9 - 10]
outline general solution procedures but we prefer to base our analysis
on the papers by Craggs [5] and Cherepanov and Afanas'ev [8]. It is re-
stricted to symmetric crack extension even though Norwood [10] and Brock
[11 - 12] recently have treated some non-symmetric cases and it leads to
a Green's function for the stress intensity factor which is analogous to
the static one derived by Sih et al [13]. A numerical integration gives
results for any symmetric self-similar pressure profile.

PROBLEM FORMULATION AND SOLUTION

Consider the following conditions in plane linear elastodynamics: At

t = 0 a crack is somehow initiated at the origin of a polar coordinate
system (r, 8) in an undisturbed homogeneous medium described by the Young's
modulus E and the Poisson'a ratio v. It's tips pPropagate in opposite
directions along the x-axis with the same constant velocity v which is less
than the Rayleigh wave velocity cp and thus they lie inside the shear wave
front at r = c,t, see Figure 1. The crack faces are opened by two pairs

of concentrated line loads of magnitude F = pvt which are moving in oppo-
site directions with the velocity VE < V. The disturbed medium is encom-
passed by the longitudinal wavefront at r = cjt. The boundary conditions
along the x-axis are

"

Vg 0 when ]xl > vt and
(1)
o

9 pvt[S(x+th) + G(X-VFt)]H(t) when x| < vt

—_—_—
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Here §(t) denotes the delta function and H(t) the unit step function.

The problem consists of solving the governing wave equations with the

appropriate initial and boundary conditions. The method of solution follows

in the vein of Craggs [14, 5] and Cherepanov and Afangs’ev [8]. The self-
similarity of the problem reduces the independept variables to r/F and 6.

The semi-circular regions above the x-axis and inside the respective wave
fronts c,t and c,t are mapped on the upper halves of the C1 and Zp planes
respectively with

z. = = [c.t cosH + iv(cjt)2 - 12 sinf] and j = 1, 2 . (2)
J r J

The whole problem then reduces to a Keldysh-Sedov problem for one analytic
function in the half-plane Imz; > 0.

The details of the solution are found in [3]. For both tips, the resulting

expression for the stress intensity factor becomes

- 2pvt | f(sv) , F(v,s) ) 3)
KI(v’t’S) Vvt £(v) V1-s2

Here s = vp/v denotes the relative speed of the lgading points, f(v)
denotes a universal function of the crack speed given by

f(v) = V1-M;2/(1-V)R(v) where 4)
R(V) = -[(2-M2%)2- 4/(1-M;2) (1-Mz2)]/M,2 (5)

denotes the Rayleigh function with M; = v/c;, and M, = v/cy being Mach
numbers and m the ratio c;/c,, and F(v,s) denotes the expression

m2R (sv) 1-s2

F(v,s) = Hi“’ls—) —5—2] © MOYV) - L) + 4I(v,s)] +

+ 8 N(v,s)‘(l—sz)/L(v) . (6)

The function F(v,s) contains in turn the following functional expressions:
First there is P(v,s) given by

2 2
2-5°Mp?%) (6-85%M;%+s2M,2) 2,2y qflzsMi? .
P(v,s) = ( i(%-s(ZMIZ) - (3-2s“M;y*%) m— (7)

Then we have the well known Broberg function [4]

2y 2
L(v) = [iﬁ&i:ZMLili & 4M12] Ki - [LZ:MA_A_ + 4J E; - 4M22Kz + 8E, , (8)

1-M, 2 1-M,2

where K, and E; denote complete elliptic integrals of tbe'first gnd second
kind respectively with the modulus v1-M;2 and the definition of index 2
follows in analogy. For details see Byrd and Friedmann [15]. Next,
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4 2-M;2)2 8 2-M,2)2
M(v) = M12[§'+ (I-MTZ) ] Ky - [g (1+My?)+4(1-Mp2) + iijﬁf?l~ E,
1 4 5
- gé-Mzsz + 3 (8-M2“)E, . (9)

The functions J(v,s) and N(v,s), finally, both contain complete elliptic
integrals of the third kind. m, has the same modulus as K, and E1 and the
parameter n,? = (1—M12)/(1-52M12). T2 is found by switching the indici.
The expressions read

J = [t h2 o, 2 242M, 2-3M, 2 2
() = - [dasmney WimeE /s [@ran -, 238, m, K /3
+ (Ma2my-Ep)/s? - [(2-M22)E2-M22K2] /3 and (10)

2y 2 22 4 2 2
2 = (2-5"M2%) (2+s2M,p%-452M, ) 2 2
s*N(v,s) = {ors 7(1-52M,7) My om-Ey- (M2 %m,-E,)

(2-52M,%) 2
ere ; [(l_slez'nlz)nl-E1+SzM]ZKIJ /8(1-52)

[(1-52M2Z-nzz)n2-52+sZM22K2] /2(1-s%) . (11)

In the quasi-static limit equation (3) yields the same result as would
Sih et al [13] for a symmetric loading.

The case when the forces act at the origin is contained in equation (3).
Setting Vg-= s = 0 we obtain

2F
VTVt

Kiv,t,0) = © MOW)/L)-11/£(v). (12)

Somewhat surprisingly, this implies that the stress intensity factor, and
hence the energy release rate, will become Zero at a crack speed Vnax
which is less than the Rayleigh wave speed. See Figure 2 for details,

ENERGY RELEASE RATES CAUSED BY SELF-SIMILAR PRESSURE PROFILES

Our purpose is to study the effects of gas penetration on the energy
release rate at various crack speeds. More specifically, we choose a
one parameter family of binomial type pressure profiles given by

p(s,q) = p0(1+q)(1—|s|)q when -1 <s <1, (13)

Here p, is some reference pressure and the parameter q is a measure of
the peakedness or, equivalently, the gas penstration. All pressure pro-
files exert the same opening force on the crack faces due to the factor
(1+q). The stress intensity factor is obtained from an integration of
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equation (3) with p(s,q) as a weight functions as
1
Kplvot,a) = J Ky (v,t,s) p(s,q)ds . 14
o
The energy release rate in turn is given by the universal relation
6iv,t,q) = (1-v)K *(v,t,qQ)f(V)/E , (15)
see Freund and Clifton [16] for example. Plane strain conditions are

assumed.

We prefer to present normalized values g of the energy release rates with
the static Broberg crack taken as the reference state. Thus

= 2 2
glv,q) = Gp(v,t,q)/G  where Go = M(1-v¥)po“a/E , (16)

and a = vt is the instantaneous crack length. Hereby g(v,q) becomes igde—
pendent of a. With the aid of equations (3), and (13 - 16), we may write

1 2
£v,a) = g(v,0) - [ﬂl—“ﬂﬂ%‘)ﬂﬂf (1-5) % (sv) Eﬁ—’slels] ; (17)
(o]

v
1-s2

where g(v,0) is the normalized energy release rate of the Broberg crack
which is given by

glv,0) = m®™™M*/LE(V)E(v) . (18)

The squared factor in equation (17) is denoted I(v,q) and must be evaluated
numerically. For the Broberg crack a weighted Gauss-Chebyshey formula )
with ten sampling points yields I2(v,0) = 1.000 and that confirms equation
3).

It is also possible to deduce other limiting forms for g(v,q). From.
equation (12) there follows that for an infinitely peaked pressure dis-
tribution the normalized energy release rate is given by

lim g(v,q) = T—‘:; IM(V)/L(V)-1]2/£(v) . (19)
q-»oo
For a static crack the results of Sih et al [13] yield the formula

3

4
g(0,9) = — [(qﬂ)
4 w2 k=0

2
-0*as2),/ (q+1/2)k+1] : (20)

where the expression ( )k denotes the Pochhammer's symbol.

The results of the calculations are plotted in Figure 3 where g(v,q) is
shown as a function of crack speed for v = 1/3 and with q as a parameter.
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The exact limiting forms for q = 0 and q = ©, given by equations (18) and
(19) respectively, are represented by full lines. For intermediate values
of q, where a numerical evaluation of I(v,q) is necessary, the results are
indicated by broken lines. The static limit given by equation (20) is
drawn as circles on the vertical axis and the limiting speed on the hori-
zontal one.

We observe that the extent of gas penetration has a profound effect on

the energy release rate. At one extreme, total gas penetration is modelled
by q = 0 and the curve g(v,0) may be regarded as an upper limit to possi-
ble values of the energy release rate. Even a slight decrease in the gas
penetration will lower it markedly. For a linearly decreasing gas pressure
for example, when q = 1, the available energy is reduced to about half or
less. For a more realistic pressure profile we would expect it to drop
éven more and to approximately correspond to the other extreme value which
is no gas penetration and modelled by q » @, Based on these curves we also

expect that the theoretical limiting velocity may be lower than the Rayleigh

wave velocity in a situation where the gas doesn't entirely fill a propaga-
ting crack.

The results presented above can only form a qualitative basis for the equa-
tion of motion of a pressurized crack in a blasting situation. If they are
supplemented by an expansion law for the gaseous detonation products, an
expression for the crack surface displacement, and measurements of the
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Figure 1 Crack Geometry Figure 2 Limiting Crack Speeds
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Figure 3 Normalized Energy Release Rates Versus Crack Speed
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