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ON VIRTUAL CRACK EXTENSION METHODS FOR COMBINED
TENSILE AND SHEAR LOADING

M. L. Vanderglas and R. J. Pick*

INTRODUCTION

(G) from (i) the displacement field before crack growth predicted by the
finite element or other method, (ii) and the change of stiffness during
growth, as described in equation (1),
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where a is the crack length, u the displacements, [K], the finite element
stiffness and f the loads. If the loads remain constant during crack
extension then
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Parks [1] computes this expression by summing the contributions to this
equation from each element of a contour surrounding the crack. In contrast
Hellen [2] bases his calculations on the assembled global stiffness matrix.

In both methods, stiffness derivative terms are approximated by

3 [K
Ja
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Stiffness terms depend on the nodal coordinates and the difference A[K]
is due to the alteration of the coordinates of some nodes by an amount Aa.

is assumed to extend. Most finite element techniques for the estimation

of stress intensities (K1, KII) do not consider the variation of calculated
values with the assumed (instanteous) pPropagation direction. It has been
proposed that a crack will pPropagate in a direction favouring maximum
energy release (Gpax). If only to provide the most conservative value, the
magnitude and direction of the maximum energy release (or equivalently,
stress intensity) are desirable from an analysis point of view.
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VARIATION OF Kp, Kyp, Ji, Jo WITH 8

Defining W as the strain energy density, uj the displacement vector, T
the traction vector and s as the distance and ny as the normal along a
contour, Eshelby [4] has defined

Bui
JK = fanK - Ti E;Ez ds (4)

taken over any open contour starting at the lower crack face, surrounding
the crack tip and ending at the upper face. le proves that Jg gives the
energy release rate if the crack were to extend in the Xy direction (the
crack is initially aligned with the Xy axis). Rice [5] shows further, that,
by choosing a convenient contour the energy release rate can be calculated
even when local crack-tip yielding is modelled.

Hellen and Blackburn [6] have shown that in two dimensional elasticity
problems with combined tensile and shear loading, the stress intensity
factors K1, KII are related to the J, and J, integrals by

| (—1'—"?1%1 (K2 + K2)) (5)
Foi= :Lll;%ilifl.KI (6)

where Kyy7 and J3 are assumed to be zero and v is Poisson's Ratio, E,
Young's Modulus and K = (3-4v) for plane strain.

VARIATION OF G WITH J,, J, AND 6

The value of G is simply J, for a tensile mode (I) of fracture however
for tensile and shear loading (I, II) the calculated value of G depends
on the value of 9. The virtual crack extension methods can be used to
calculate

v, = L T3[K] ,
Figp 5 s o = - = {u} {u} s (7
1 da 0=0 2 9 a 9=0
v - 1T 3[K]
Jp = = 2L = - = {u} {u}| (8)
931 g_1/2 g % |o=3

It is therefore desirable to have a relationship between J;, J,, 6 and G.
Hellen has predicted the trajectory of a two dimensional crack by calcu-
lating G for several value of 6 and assuming growth in the direction of
maximum G. Upon plotting the results of a test case, Hellen discovered

a sinusodial variation of G with 6. Similar results can be obtained inde-
pendent of the mesh size suggesting the relation between G and 6.

By studying the effect of Aa on the element stiffness matrix it can be
shown that G at any angle 6 is defined by
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Part V - Analysis and Mechanics

G(8) = Jycos@ + J,sind . 9)

Furthermore it becomes apparent that this sinusodial behaviour of G(e) is
a consequence of the assumed linear material behaviour (strain energy is
a quadratic form of the nodal displacements). It may be expected that
formulations of the problem which include (nonlinear) plastic behaviour
or based on plate theories will not exhibit this behaviour.

Considering relation (9) the maximum energy release rate occurs at

2K_K
_ 111 _ J,
9 = arc tan |- E;EIKIIT = arc tan < :f;)

and has the value
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The relationship between G and 6 is shown graphically in Figure 1 and
illustrates the following:

1) a polar plot of G(6) versus O gives a circle which intersects
the origin,

2) if KI # 0, Ki1 = 0 or if Ky = 0, Ki1 # 0, the circle is centered
on the x-axis,

3) 4f K # 0 and Kiy # 0, the centre of the circle will not lie on
the X-axis,

4) the minimum and maximum values are the same in absolute value
and are oppositely directed,

5) the maximum value of G(8) is the same as the vector sum of J1 and
Ja.

In three dimensional applications, similar results are obtained except
that, instead of a circle, a sphere is obtained:

G =G(®, ¢) = JicosBsing + J,sinfsind + Jscos¢

where 6, ¢ are angles shown in Figure 2 and G varies along the crack
front.

If the crack lies on a plane of symmetry and boundary conditions are sym-
metrical with this plane, the component Jg normal to this plane must be
zero. The parts of the contour contained in symmetric parts of the body
are non-zero but opposite in sign. Thus, mixed mode crack problems can-
not be analyzed using symmetry unless other information is available for
the calculation of J,.
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EXAMPLE OF A CIRCULAR CRACK IN A HALF-SPACE

As an example, a circular crack in a half-space was analyzed under the
action of 10,000 psi applied perpendicular to the crack face (Figure 3).
Although this problem could be analyzed using an appropriate two-dimensional
finite element formulation, a 90° segment was analyzed as an example of

a crack problem giving rise to the two components J;, J,. A modified form
of the stiffness derivative technique was used to predict the values of

J1 and J; for four points along the crack front. The displacement field
was obtained using a variety of constant and linear isoparametric wedge

and cube-like elements. Elements bordering the crack front were modified
for singular behaviour.

The results of the analysis give the tabulated values of Jy, J, shown in
Table 1. Because of symmetry the crack remains in its plane when growing
and therefore J; is zero.

CONCLUSIONS

The method of virtual crack extension can be used to predict Ji1, J2, J3
the energy release rates for crack growth in three mutually perpendicular
directions. It has been shown that this can be related to the energy
release rate G(8, ¢) for crack growth in the directions described by 6 and ¢
at any point along the crack front. G(6, ¢) can therefore be considered
a vector having both magnitude and direction. Prediction of the vector
with maximum amplitude Gpax is obtained from the vector sum of Ji, Ja2, Jj.
Since J,, J,, J3 can be related to K1, Kip and K11 which may be related
to crack growth rate and direction, the value of G or Gmax should also be
indicative of crack growth rate and direction. There remains however the
question as to the relation between G and the crack behaviour.
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Part V - Analysis and Mechanics

Table 1 J; and J, for a Circular Crack in a Half-Space

v J J2 Gmax = (J+J3)12
11..25° 34.77 6.92 35.45
33.75° 29.48 19.70 35.46
56.25° 19.70 29.48 35.46
78.75° 6.92 34.77 35.35

Derivations by Sneddon [7] show that Gpax has a constant value along the
crack front of 34.76. The combination o the calculated values of J, and
J2 give a value of 35.46 within 2% of the theoretical value.
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