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ON THE THREE DIMENSIONAL THEORIES OF CRACKED PLATES

S. K. Bhandari*, B. Barrachin** and J. L. Picou*

INTRODUCTION

It is well known since the beginning of Fracture Mechanics that the Strain-
Energy-Release-Rate G depends on the thickness B of the specimen used;
the value of G, at smaller thicknesses could sometimes be seven times that
for very thick specimens ((see for example Figure 3.36) in reference [1]).
It is evident that the plasticity correction used after Irwin and based on
plane-stress plane-strain argument could not help account for this varia-
tion and it was generally believed that a three-dimensional theory was
needed to explain the triaxiality effect. A three-dimensional elasto-
plastic theory is beyond the present reach. Even in the elastic domain,
the problem seems to be extremely complicated. Nevertheless, recently

two theories of elastic cracked plates have been proposed which reveal

the variation of the Sstress-intensity factor K in the thickness direction.
One would therefore be tempted to explain at least partially the thickness
effect noting that G and K are related through material constants.

The aim of the present communication is:

1) to discuss two theories: one due to Hartranft and Sih [2] (we shall
call it H-S theory) which starts with a certain proposed variation
of stresses through the thickness, the other due to Folias using a
certain integral representation for the displacements;

2) to present some numerical results obtained on a cracked plate of mod-
erate thickness. These will be critically examined to evaluate the
available theories;

3) finally, to look into some of the fundamental hypotheses of the pre-
sent day fracture theory in the light of available 3-D fracture re-
sults.

THEORY PROPOSED BY HARTRANFT AND SIH

In a series of papers [2,3,4], Hartranft and Sih have developed an approx-
imate 3-D theory of plates as applied to crack problems. In [3], they
have shown that the singular part of the normal stress Oyy, for the case
of a plate subjected to uniform stress 0o (Figure 1) can ge written as

k_(z)
ag = 3 cos 2 (1 + sin L] . sin 3
o v ? 2 :

where the stress-intensity factor is

ks(z) = g(p) ¢(1) 0 va £'(z)
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Jhere ¢ = z/B, ggp) is a function of a constant parameter p and ¢(1) is
given as a function of the parameter P and the ratio B/a (Figure 2).

The mean value of kg(2z)

+B
= 1 4 __sin’p
K = == = =
s 2B “/; ks(z) e p (2p+sin2p) *(1) Oo/;
which using p = 0,4 as suggested in [4] becomes

K, = 6(1) oO/E
IF is %nFeresting to note that Ks varies with B/a through ¢(1), a varia-
tion similar to the one implied by the experimental data. Thus one might

expect to account for a partial thickness effect with the help of this
theory.

THEORY PROPOSED BY FOLIAS [5]
Folias has treated the same problem using the method of Lure [6]. The

analysis is'sufficiently complex. The final result for the stress g in
the crack-tip vicinity is v

o, va 6 5 %
o = AF(g = in = in 2
vy (%) = cos > (l * sin 5 . sin 5 ), 0<zg<1,

which leads to the stress-intensity factor

{ 1 4 I
(1-52  +g?¥

and A = A(B/a) is shown in Figure 3 for v = 1/3.

kp(z) = A F(C) o va, F(T) =

N =

The average value of kF(z) is given by

Ao va
[¢]

|

Fa-am@?

IF shogld be noted that the mean value of Kp is greater than the two-
dimensional value except for V = 0 when the plane-stress result is re-
%ovgred. Moreover, one finds that contrary to the results of H-S theory
Folias' theory indicates an increase of stresses as z/B is varied from 0,
tq the value of 1. On the other hand, the variation in the mean value
of Kg (V#0) with respect to B/a (Figure 3) is of the order of 11% and one
woul@ tend to believe that a 3-D elastic theory would not give even a
partial answer to the experimental variation in Ge with respect to thick-
ness.

NUMERICAL RESULTS [7]

We have carried out certain numerical computations for the value of K in
a moderately thick centrally through the thickness cracked plate.
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The configuration used is that of Figure 1 with a width of 60 mm and two
values for the thickness and for the crack length to obtain finally three
different values of B/a (1.0, 0.75 and 0.25). The computations were per-
formed using two different methods:

The Finite Element Method

We shall denote

(= dAm e By (using stress data)

K = Lim E UZ (using displacement data and plane

u 0 2 /IT (1-v?) strain assumption)

Note that, although both Ky and K, values are given in the text, K, is
the solution to be compared because the computer codes we used assure the
displacement compatibility as most of the F.E. computer programmes. This
point has already been stressed in the literature [8] and we shall not go
into more details:

The F.E. programmes used are:

1) SAFE 2D for a two dimensional analysis in order to compare with the
three-dimensional analysis

2) SAP IV for the analysis of the finitely thick plate. In this case
16-node brick elements were used. The mesh is shown in Figure 4 for
1/8th of the plate considered. We have used 336 elements. Two
values of B/a = 0.75 (Case 1) and B/a = 0.25 (Case II) were run with
a uniform tensile stress of 147 MPa applied at the edges of the plate
parallel to the crack.

The results concerning Oyy- distribution through the thickness for the
plane y = 0 are shown in gigure 5. The computed mean K-values are given
in Table 1+« These results will be discussed later.

The Boundary Integral Equation Method

This method has been developed due to the efforts of Cruse [9], Lachat
and Watson [10] and others. The results we present here were obtained
with a EITD programme developed at CETIM, using a surface discretisation
shown on Figure 6. This programme gives the value of the J-integral for
any given closed contour around the crack-tip. We calculated the J-
value using three contours in order to verify that this value is indeed
independent of the contour. The Kj value is

- |
K. = __Ji;l_ 12
I vy

Note that the stress distribution obtained with the EITD programme was
practically identical to the one calculated with SAP programme.

(cf. Table 1)

Before comparing the different K values, we would like to discuss the
precision on numerical results. Firstly, before carrying out the costly
3-D analysis, we check that the mesh used was sufficiently refined com-
paring 2-D calculations with available theoretical value. (Kyy =

oo /&, a being the finite-width-correction factor (11)). The comparison
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was extremely good (cf. Table 1). After this step, we proceed to 3-D
calculations. The use of two different methods (F.E. and B.I.E.M.) gives
us another cross-check on 3-D results. The comparison was once again
extremely good (cf. Table 1). This confirms our confidence in the results
and we feel that their precision is certainly better than 10%.

COMPARISON BETWEEN THEORETICAL AND NUMERICAL RESULTS

Stress Distribution

From Figure 5 we note that the numerically calculated stress o falls
down as we go from the centre of the plate towards the free surfaces.

This result is in contradiction to Folias' theory. The H-S theory, though
shows the same tendencies as the numerical results, predicts that the
stress distribution for different values of B/a should be sufficiently
different. For example, the ratio of stress in cases I and II (same
crack-length), in the vicinity of crack-tip

(oyy)I /(cy)')n = [qa(l)]l / [¢(1)]H = 1.42

instead of nearly 1 as given by the numerical analysis,

K-Values

From Table 1, for the 3-D geometry, we shall make two remarks on the mean

value of K:

- firstly, concerning the values of K: we find that the 3-D numerical
results (K,) are close to 2-D values while the predictions of the H-S
theory are very much lower and that of Folias very much higher.

- secondly, concerning the variation in K-values with respect to thickness:

The numerical results indicate that there is hardly any effect of thick-
ness on the K-values. This result is similar to that given by Folias'

theory whereas the H-S theory predicts a variation of 42% in going from
Case I to Case II.

It might be of interest to point out here that the analysis of Sternberg
and Sadowsky [12], though for the case of a circular hole in a plate of
arbitrary thickness, also showed little dependence of the stress distri-
bution on the thickness of the plate.

Figure 7, indicating the distribution of the S.I.F. along the crack front
for Cases I and II, was drawn to visualize still better the comparison
between different methods. Note that the H-S theory predicts that for
moderately thick plates, the results are quite different from the plane
solutions, which does not seem to be the case. The Folias' theory though
predicts that the thickness effect is about 10%, gives a K-distribution
along the crack front through the thickness which is entirely different
from that of numerical results. Moreover, the mean value of K from the
Folias' theory (Kg), even for large thicknesses is much higher than the
theoretical 2-D plane-strain solution.

CONCLUSION

It is evident that the three dimensional problem of cracked plates is not
yet fully resolved even in the linear elastic domain. But the important
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conclusion to which the present study leads us is that one would be in-
capable to predict the experimentally observed variation of Ge wiph Te-
spect to thickness, even through an exact 3-D elastic theory. This comes
from the fact that the 3-D numerical results are close to the 2-D ones.

On the other hand, looking at the parameter Gc as obtained through the
Griffith-Irwin theory, we find that its value remains nearly the same

for the cases of plane-stress and plane-strain, although the plastic flow
at the crack tip is entirely different in both the cases. This leads us
to believe that certain hypothesis of this theory in formulating G, may
have to be re-examined.

In particular, the plastic energy dissipation rate, considered gonstant_
in this theory was shown to vary with the geometry and the applied logdlng
(see [13] and the references given there). This result might be of sig-
nificance in formulating a realistic fracture governing parameter.
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Mean Value of S.I.F. as Given by Different Methods (MPa. vm)

CASE I | CASE II | CASE III
CRACK LENGTH (a,mm) 10.0 10.0 7.5
RATIO  B/a 0.75 0.25 1.0
Y FINITE (K5 18,2
=i ELEMENTS z oy
u
THEORY* 15.55 13.11
FINITE ) 18.44 18.35
ELEMENTS K 15.52 15.52
-
=38 INTEGRAL
1 EQUAFLONS K, 15.53 16.2 12.83
> | H-S THEORY K, 13.21 9.27 12.11
FOLIAS THEORY %; 23.64 23.13 18.78
* =
Kip = @ ova

Figure 1 Plate with a Central Crack
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Figure 5 Normal Stress Distribution Through the

Figure 6 Surface Discretisation for Integral-Equations

Thickness of the Plate in the Plane y =0

Analysis
369

e

by i

R TOCE T

R VR e

Lo

ot



Fracture 1977, Volume 3

K ;
(MPaym) [k (2
SAPIV I/l/\=1)
——— SAFEZD /
RS H-S /
/
L FoLiAs
/
'
25 /
= L e
L Ke
20 a
e S
______ - ullaln
e e[ M
10
b e e _{I—_—. s G 5 4 vy
5
z/B
0 02 0% 0% 08 10

Figure 7 Distribution of Stress-Intensity Factors

for Cases I and II
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