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ON THE APPLICATION OF CTD TO THE FRACTURE MECHANICS

Y. Mitani* and H. Miyamoto**

INTRODUCTION

The purpose of this paper is to combine the continuum theory of dislocations
and conventional fracture mechanics, in order to clarify the physical aspects
of deformation to seek a criterion of fracture from a microscopical point

of view. These ideas were firstly realized by the BCS-Model [1], where one
dimensional distribution of dislocations is assumed and the elastic-plastic
-- problem is replaced by the problem of finding out an equilibrium distri-
bution of dislocation under some suitable boundary conditions. Further
progress has been made by Yokobori et al [2] and Lardner [3]. These direct
applications of the BCS type solution, however, complicate the mathematical
treatment, and seem to be inconvenient to the general plane problems. In
this analysis the concept of dislocation theory is incorporated with Finite
Element Method (FEM) to find out the equilibrium distribution of disloca-
tions which satisfies the boundary conditions. It is noted that the esti-
mation of the internal stress field due to the dislocation density is made
fictitiously after Eshelby by self-consistent method [4] with the assumption
that uniform plastic strain is produced by dislocation migration, if the
dislocation were not confined in the elastic domain. The numerical analysis
based on these fundamental concepts, (termed CTD hereafter) is carried out
for monotonic loading condition, and the compatibility of the plastic deform-
ation is examined for a centrally cracked plate.

THEORETICAL FUNDAMENTALS AND NUMERICAL PROCEDURES

The equilibrium equation of BCS model may be rewritten, associated with a
slip plane as:

T, + T. =T , 1)

in the plastic zone whose dimension appears as the integral limit of inter-
nal stress term Tjnt as an unknown as well as the dislocation density -
function. Here, Ta, Tc denote the shear stress due to the external force
and the frictional stress, respectively. The limitation of assuming the
one-dimensional dislocation distribution will be overcome by properly
estimating the internal stress field due to the dislocation and by examining
the equation (1) in iterative fashion.

We assume the following mechanism for the calculation of the internal
stress.
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(a) The plastic zone with uniform in the elastic domain is repre-
sented by the surface forces after Eshel y

T. =n « 6Pk, (2)

i~ ™" S5k
which are expressed by the nodal forces in FEM.

(b) The uniform plastic strain associated with the slip plane YP is
related with the excess dislocation density N with burgers vector b as

P = /2)m 3)

where N is derived from the number of the equilibrium dislocation of BCS
type solution for one-side pile-up [5] with a plane correction factor n*

T(1-v)n*d
N = TU-v)n*d | T opp 4)

ub
and

Teff = (Ta+Tint) T (5

where Tj,¢ vanishes for the initial stage.

Then we obtain the hardening ratio for uni-axial tension H' by considering
2T, = O
c Y

2 u 1
H' = Z2. 5 £ B
= (6)

which shows the inverse proportional relation to the average grain diameter
d. In this way we equivalently assumed the simple bilinear material char-
acteristics by excess dislocation, and further discussions of dislocation
distribution focus on the "geometrically necessary dislocation" after
Ashby's terminology [6].

(c) Taking the irreversibility of plastic deformation into account,
we obtain the internal stress field with free boundary condition for the
specimenconfiguration. Hence the internal stress field is the sum of the
stress due to the dislocation T4 and its image stress Té

Tint = Tqg * g - (7)

Hence, for each external stress increment, equation (7) is calculated by
using relations (4), (3) and (2). Then equation (1) is examined until it
holds. In the case of isotropic material, the slip plane is determined
equal to the maximum shear plane of each incremental step.

The material constants used in this analysis are E = 2.058x10l1Pa,
Tc = 9.80 MPa, V = 0.333, b = 1.0 A and d = 107° m.

Part V - Analysis and Mechanics

The specimen configuration is half width W/2 = 100, thickness B = 1.0

and half crack length a = 10 mm, respectively. The dislocation density

VD and the total number of dislocation TND are defined in a yielded element
as VD = N/d and TND = NA/d, respectively, where A is the area of the element
in which stress and strain are defined as constant by FEM.

RESULTS AND DISCUSSIONS

The typical feature obtained by this analysis is the bursting phenomena
which depends highly on the plastic characteristics expressed by n*, that
is, in the course of examination of equation (1), such loading stage appears
where no convergence is obtained. It is seen in the divergence of TND in
Figure 1, which implies that the compatible state can not exist and, hence
the assumed condition (a) doesn't hold any more. Then it can be inferred
that the excess dislocation which violate the compatibility might be emitted
from the crack surface at this loading point, in order to recover the com-
patibility by the geometric change of the crack surface [7]. Since the
effect of the internal stress field is highly localized near the crack tip,
crack opening displacement increases non-linearly as shown in Figure 2,
corresponding to the tendency of TND, where COD is plotted for the nearest
joint of the crack tip.

These localized effect of the internal stress field influences also the
spread of the plastic zone, and the resultant effects with the dislocation
mobility show clearly the differences between the materials which have
different n* as shown in Figures 3 and 4. It is noted that the bursting
phenomena occur indifferent to the plastic zone size, instead, those
materials which have n* smaller than 1.5, so far as this analysis is con-
cerned, recover the stress singularity characteristics at the crack tip
element is yielded before bursting occurs. This result implies the transi-

tion of fracture conditions according to the plastic property of the material

from brittle to ductile. Figure 6 shows an example of stress singularity
recovery after its relaxation.

Comparison is made in Figure 5 on plastic zone size. The discrepancy
between the small scale yielding solution and the present analysis after
the loading level around 0.4 presumably stems from the ignorance of the
internal response due to the plastic deformation in s.s.y. analysis [8].
The difference to the BCS solution is due to the difference of the plastic
zone dimension. The change of the internal state in terms of dislocation
density distribution is clearly seen in Figure 7 which shows the difference
of the equilibrium distributions not only by the amount but also by the
position of the peak, where numbers in the Figure 7 denote those of the
nearest elements around the crack tip from the front to the back.

From these facts we can conclude that s.s.y. concept is applicable to
those materials which recover the stress singularity without violating
the compatibility conditions and does not always mean the geometrical
amount ratio tao the other dimensions. The greater the n* is, the more

easily the compatibility conditions is violated. Hence, for those materials

which have smaller n* the conventional fracture criterion as the stress

intensity factor might be applicable. In Table 1 the results are summarized,
where NELM denotes the element number which has the maximum dislocation den-

sity just before the bursting occurs, and from which the excess dislocation
might be emitted to the crack surface.
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CONCLUSIONS

The application of CTD to the elastic-plastic analysis is useful for dis-
cussing fracture phenomena for the following reasons:

(a) It analyses the compatibility of the plastic deformation which
is responsible for the fracture in the case of nonhomogeneous deformation.

(b) The internal responses of the material or mechanisms can be dis-
cussed by the introduction of the concept of dislocation distribution which
is ignored in the conventional fracture mechanics (especially in LFM).

The blunting phenomenon is explained by the emission of dislocations which
violate the compatibility condition.
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Part V - Analysis and Mechanics

Table 1 Bursting Stresses by Monotonic Loading for Different Correction 3
Factor
i
n* Burst. TND VD max. NELM §
Stress x 10* x 107*
1.0 - = - - =
1.5 0.315 6767.83 74.76 1 0.9208
2.0 0.239 3634.25 24.68 1 0.8297
2.5 0.163 340.09 4.85 5 0.3914

Figure 1
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Figure 2 Variation of Crack Opening Displacement for Different
Correction Factor

Figure 3 Spread of Plastic Zone for n* = 1.0
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Part V - Analysis and Mechanics
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Figure 4 Spread of Plastic Zone for n* = 2.0

Dimensionless Plastic Zone Length (R/a)

Figure 5 Comparison of Plastic Zone Length
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Figure 6 Variation of Stress Distribution Ahead of the Crack Tip for
Different Loading Level
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Figure 7 Variation of Dislocation Density Around the Crack Tip for
n* = 1.5
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