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ON THE APPLICATION OF CONTINUUM THEQRY OF DISLOCATIONS
TO THE MECHANICAL BEHAVIOURS OF MULTI-PHASE MATERIALS

Hiroshi Miyamoto* and Masanori Kikuchi*

1. INTRODUCTION

The phase-boundary behaviour of multi-phase materials is an important
problem. For example, pile-ups of dislocations occur at grain boundaries
of metal polycrystals, and the internal stress field by these performs an
important role for the mechanical behaviours of polycrystals. These in-
ternal stress fields are considered, from the view point of the continuum
theory, due to the incompatibilities at the phase-boundary. So, it is
useful to discuss the compatibility conditions. For this purpose, the
method of continuum theory of dislocation (CTD) is introduced. The basic
idea of this theory is established firstly by Eshelby [1], and Kroner [2]
and Mura [3] extended his ideas to many problems.

In this method of CTD, a plastic deformation is considered to occur due

to emissions and motions of dislocations. So, an elasto-plastic problem
becomes to find out the equilibrium dislocation density, @j;, which satis-
fies the boundary conditions. This is carried out by using three dimen-
sional elasticity theory. Therefore, an elasto-plastic analysis becomes
no other than an elastic analysis. In this paper, analyses are carried
out by using finite element method (FEM). If &j; 1is determined, the in-
ternal stress field of these dislocations is determined and the role of
the incompatibilities is able to be evaluated.

On the other hand, many studies are carried out for the mechanical behav-
iours of multi-phase materials by using FEM. In general, a (DP) matrix
method, used for elasto-plastic analyses by FEM, assumes that compatibil-
ity conditions are satisfied, so this method is not suitable for the dis-
cussion of incompatibilities.

In this paper, two examples of multi-phase materials are analyzed. One
is bi-crystal of metal and the other is spherical cast iron. Results
are compared with those by a [D’] matrix method.

2. NUMERICAL PROCEDURE

Assumption is needed for the creation and motion of dislocations which
correspond to the plastic deformation. This is made by reference of dis-
location theory. Once this is made, distribution of Q;; is determined
corresponding to a stress field given by elastic analysés by FEM.

*Department of Precision Machinery Engineering, Faculty of Engineering,
University of Tokyo.

445 MS160

B SRV N R

R e

* TRl il

T AR

Gy


User
Rettangolo


Fracture 1977, Volume 3

The determination of equilibrium distribution of %ij is carried out as
follows:

(i) By Kroner, relationship between 04 j and B;j, the plastic distortion
tensor, is given as

N _ *
%5 T Cixg By, ¢9)
where, eijk is the unit permutation tensor.

(ii) The plastic strain, e;j, is given from plastic distortion tensor
as

* * *
fij = (Byj + B/2 . &)
(iii) Owen [4] obtained the internal stress assuming that €;~ is equiva-
lent to pre-strain in elastic domain. By FEM, this is’carried out
by substituting €;j into the following equation.

F, b= - 7817 D] {e*}d (vo1) (3)
where {Fin} is equivalent nodal force. By {F;j,}, internal stress
and strain are determined. This consistent to the method of the
self-consistent model by Eshelby.

(iv) Examination is performed whether the internal stress is in equili-
brium to the dislocation density or not. If it is not, oj; is re-
determined by the sum of applied stress and the internal s%ress and
process (iii) is repeated until it reaches the converging value.

(v) In the next stage, load is increased and repeated from procedure
(iii).
3. APPLICATION TO THE MECHANICAL BEHAVIOURS OF F.C.C. METAL CRYSTALS
3.1 Assumption

(i) Emission of dislocations occurs when Ta, the applied shear stress,
reaches 7., the critical shear stress, until the back stress by
emitted dislocations becomes equal to Ty - T.. Therefore, Tc on the
slipped plane increases to Ta.

(ii) Relations between the increment of stress, strain and number of dis-
locations are given by Seeger [5]:

de/dn = 9b/16x (4)

do

Gbdn/20L (5)
where do, de, dn denote the incremental value of stress, strain and

number of dislocations, respectively. L is slip line length and x
is slip line spacing.
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3.2 Single crystal analyses

Figure 1 shows equivalent nodal force obtained by equation (3). Ténsile
axis is parallel to z-axis. At the free surface, nodal force becomes zZero
as the free surface condition 0i35n5 = 0 must be satisfied. Evidently,
surface integral of F;j, nodal force, becomes zero.

By the existence of this internal force, the crystal rotates and the de-
formation of single crystal is not equal all over the area. Figure 2
shows strain distriubtion of single crystals. By [DP] matrix method,
this effect of rotation is not described clearly.

On the other hand, in early stages of deformation of f.c.c. single crystal,
many experiments show that only one slip system becomes active. But in
this analyses three or four slip systems become active in early stage of
deformation. This means that the internal stress of dislocations on pri-
mary slip system performs an important role to prevent the activation of
other slip systems. Perhaps this occurs at the tip of pile-ups of slip
lines as shown in Figure 3(a). But in this analysis, dislocations are
assumed to distribute uniformly as in Figure 3(b), therefore, it is diffi-
cult to describe these microstructures by this method.

3.3 Bi-crystal analysis

In analyses of bi-crystal, an additional assumption is added that only one
ship system among 12 ones is able to be active on which the shear stress
(which is the sum of the applied shear stress and the internal shear stress)
is the maximum.

Three bi-crystals are analyzed and the tensile axes of which are shown in
Figure 4. Figure 5 shows the strain distribution near grain boundaries
obtained by a [DP] matrix method for type C. Strain near grain boundaries
varies continuously and smoothly. But the results by CTD varies from
Figure 5. Figure 6(a)-(c) show the results obtained by this method.

Strain distribution is not smooth near grain boundary. A common feature
of the three examples is that the strain parallel to the tensile axis
decreases near boundary. In experiments, the decrease of strain near
boundary is sometimes observed and these results agree with them, while
the result by a [DP] matrix method is not able to describe this phenomenon.

Moreover, for every type A, B and C the active slip system near boundary

is difficult from that far from boundary where the primary slip system is
active. At grain boundaries, the phenomena that second slip system becomes
active at first is observed. By Chalmers [6] the internal stress field

by dislocation pile-ups in one side of bi-crystal provokes slip activations
in adjacent crystal. The slip system activated is the one on which sum

of the applies stress and the internal stress is the maximum. It is ob-
vious that the method of CTD is able to treat these proceudres analytically,
which, by a [Dp] matrix method, is difficult. The state of the variation
of shear stresses on first and second slip systems are shown in Table 1

for type C.

4. APPLICATION TO THE MECHANICAL BEHAVIOURS OF SPHERICAL CAST IRON

4.1 Assumption

Emission of dislocations occurs on the plane of the maximum shear stress
when Ta, the maximum shear stress, exceeds TC. The number of dislocations
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emitted is estimated from the solution by BCS model [7] as

HI@! —v)lo "
H=TTeff. ()

The plastic strain corresponding to the emitted dislocations is determin-
ed as follows,

Y:%nb, (7)

where %, is the average diameter of crystals and T,ee is T4 - 1T,

Two dimensional analyses are carried out. Figure 7 shows the mesh division
for analysis. The black part shows graphite. Volume ratio of graphite
(Vg) is 17.1%. Table 2 shows the material constants. The yield sFress

is employed three kinds of combination. nR, the ratio of the two is
determined as T%/Tge, where T8 and 1.° denote the yield stress of graphite
and ferrite, respectively.

4.2 Results and discussion

Figure 8(a)-(c) show the propagation states of plastic regions. Black and
white region means the plastic region of ferrite and graphite, respective-
ly, and serial numbers of figures express the load stages. The final
figurations of plastic zones in ferrite matrix is the same for three ng
values, while they are different distinctly in graphite.

Miyamoto and Oda [8] analyzed the same problem for ng = 0.04 using a [DP]
matrix method. The result is that yield does not occur in graphite. In
this analysis, the internal stress of dislocations piled up at the phase
boundary is added to the applied stress. Therefore the plastic region

of graphite is mainly due to the internal stress fields by the incompat—.
ibilities at the phase-boundary. In addition, the direction of propagation
of the plastic region in graphite is along the phase-boundary. This
corresponds to the result of SEM observation of the fracture surface.

Barnby [9] proposes a model that the fracture of the carbides in an aus-
tenitic stainless steel occurs due to the dislocation pile-up at the
phase-boundary. The number of dislocations is obtained by one dimensional
analysis. In this method, the same considerations are able to be perform-
ed. The result for ng = 0.081 is shown in Figure 9. The region of )
oblique lines shows the region in which dislocations are emitted. Inclin-
ations of lines indicate the slip planes. Dislocation density becomes
maximum value (2.8 x 10°/cm®) at point a and becomes minimum (2.0 x 10*/cm?
at point b. In Figure 10(a) and (b), the equivalent nodal force‘is re-
presented for np = 0.04 and 0.081. Comparing the two cases, it is noticed
that the equivalent nodal forces for np = 0.04 are smaller than those for
ng = 0.081. It is reasonable that for ng = 0.04 yielding occurs in
graphite, while for ng = 0.081 it is not observed until final stage of
analyses. That is, for ng = 0.04, stresses of dislocations are released
at phase-boundary.

4. DISCUSSION
By Ashby [10], dislocations in non-homogeneous materials are divided into

two parts, one is statistically-stored dislocations, pg, which corresponds
to a general, uniform deformation and the other is geometrically-stored
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dislocations, p,, which corresponds to a local, non-uniform deformation.

In this paper, 35, is mainly considered, and the results show that the method

of CTD is useful to discuss the effect of pg. But about pg, it is diffi-
cult to describe the actual physical phenoménon accurately (see equations

(4) and (6)). The difficulties occurred in single crystal analyses are due

to this fact. So, it is necessary to develop this method combining with
the experimental studies.

5. SUMMARY

(i) The method of CTD is intorudced to discuss the effect of incompat-
ibilities at the phase-boundary. By this method an elasto-plastic
analysis becomes an elastic analysis.

(i1) Mechanical behaviours of f.c.c. metal crystals are analysed by
CTD. The effect of dislocation pile-ups is able to be evaluated,
while it is difficult by a [DP] matrix method.

(iii) Spherical cast iron is also analyzed., Considerations similar to
that of Barnby is carried out two-dimensionally.

(iv) It becomes obvious that this method is very useful to know about
Pg, but about pg, many experimental studies are needed.
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Table 1 Comparison of shear stress for type C

SHEAR STRESS (MPa)

02= &8.71wa
LOAD PRIMARY SLIP SYSTEM SECONDARY SLIP SYSTEM
STAGE (il1) (110} (I11)  [oll] T
19.6 N
1 -2.26 2.19 + T
z :
2 -2.49 2.42 1 :
3 -2.56 2.54 L] .....-,L-_...---..
-2.58 2.63 Lot

-2.60 2.80 X

[N
|
[~
v
©
[
~
—

Figure 1

xIO.‘
Table 2 Material constants 4+
———— . . #
FERITE GRAPHITE ar 2
E (MPa) 205800.0 4900.0
v 0.29 0.16 2r
T, (MPa) T &y
ng = 0.04 490.0 19.6 'r
z
np = 0.06 190.0 29.4 ; 0 i N ’ N
ng = 0.08T 362.6 79,4 » [ €yz
- _5xx exy
ad — 5YY
-3 .

Ta= 8- 71a

Figure 2 Strain distribution of single crystal
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(a)

(b)

Figure 3
oF
o
TYPE A TYPE B TYPE C

Figure 4  Tensile axes of three kinds of bi-crystals
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Figure 5 Strain distribution of bi-crystal by a [DP] matrix method
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Fig.6 (a) For type A

0 -5.88Mma
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Fig.6 (b) For type B

=6 .17 MPa

ql

6.f B.

Figure 6

Fig.6 (c) For type C

Strain distribution near grain boundary
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Figure 7

Mesh division of spheroidal cast iron
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Figure 8 Propagation states of plastic region for three np
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