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NONLINEAR LATTICE THEORY OF FRACTURE*

E. R. Fuller, Jr. and R. Thomson**

INTRODUCTION

In recent theoretical literature [1, 2, 3] regarding fracture in atomic
lattices some questions have arisen regarding the fundamental role of the
surface energy in brittle fracture. This paper represents an attempt to
clarify some of these basic ideas. Hsieh and Thomson [1] have shown that
in a two-dimensional lattice containing a crack there is a range of applied
stress for which the crack is mechanically stable, and accordingly, is
"trapped" by the lattice. This lattice trapping regime is bounded by a
regime of fast fracture for stresses larger than an upper critical stress,
J4+, and by a spontaneous crack healing regime for stresses smaller than a
lower stress, 0_. These stress boundaries were found to vary as the inverse
square root of the crack length, a,

o, = /th/a ) (1)
in precisely the same manner as in the continuum theory of Griffith [4].

Y is a constant of proportionality. The effective surface energy densi-
ties, vy and Y_, in this Griffith-1like expression define the limits of the
lattice trapping regime. When the macroscopic surface energy, Yo, as
defined by one-half the area under the cohesive force law curve, is compared
with v, and y_, it is found that Yo lies between these two limits. This
result is then used as a basis for constructing a theory of subcritical
crack growth, or healin » _when the stress is either above, or below, the
Griffith stress Op = Yo/a . These general ideas have been picked up and
expanded by Lawn [2] in a self-consistent and straightforward manner to

form a basis for subcritical crack growth in the presence of an external
atmosphere.

However, a recent paper by Esterling [3] has indicated that when a more
realistic cohesive force law is used in a lattice theory, the macroscopic
surface energy, as defined above, no longer lies within the lattice regime.
A Griffith thermodynamic surface energy can be defined by the condition
where thermal fluctuations cause a crack to advance and recede at equal
rates. If this definition of surface energy corresponds to Y,, the sub-
critical crack growth theory loses its basis since thermodynamic equilibrium
occurs in a regime where the crack is mechanically unstable towards spon-
taneous healing. Since these ideas are considered to be basic to the
fracture process in general, and to subcritical crack growth in particular,
this paper will reinvestigate the relationship between the surface energy
and fracture with particular attention to the subcritical crack growth
regime.

* Contribution of U. S. National Bureau of Standards, not subject to

copyright.
** Physical Properties Section, National Bureau of Standards, Washington,
D. C. 20234, U. S. A.
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ONE-DIMENSIONAL LATTICE MODEL

The quasi-one-dimensional lattice model of a crack to be considered here
is similar to that of Thomson et al [5]. The model consists of two Semi-
infinite chains of atoms that are bonded with two types of interactions,
Figure 1. These interactions are modeled as bendable (horizontal) spring
elements and stretchable (transverse) spring elements. The free ends of
the chains are subjected to equal and opposite vertical opening forces P at
the zeroth atoms. All displacements are assumed to be vertical with the
displacement of the jth atom from its equilibrium separation, c, being
denoted by u;. The stretchable elements up to the nth atom are considered
to be stretc%ed beyond their range of interaction, or 'broken', thus
forming a crack of finite length.

The total potential energy of this system consists of three contributions:
the change in potential energy of the external loading system (the negative
of the work done by the external force); the strain energy of the bendable
bonds; and the strain and/or surface energy of the stretchable bonds across
the crack plane. The potential energy of the external loading system is
given simply by Uext = “Waxt = -2 P uy. The interaction of the bendable
spring element is modeled as a second-neighbour interaction between atoms
at j-1 and j+1 that resists flexure about their common nearest neighbour at
j. The strain energy of this interaction about atom j is given by

1 2 _ 1 g 2
'2— B [(uj—l_uj)_(uj-uj"’l)] -2 B [uj+1 Zuj+uj-l] H (2)

where B is the spring constant for this interaction. The total strain
energy of the bendable spring elements, Upends is twice the summation of
these contributions for atoms j =1, 2, (one contribution for each
side of the crack). The strain energy contained in the interaction of the
jth stretchable spring element across the crack plane can be written as

2y(uj)c, where Y(u;) is defined as the density of the surface energy assigned

to each surface othhe chains of atoms [6]. This surface energy per unit
length of surface is given by

u.
Yy = 2 g wal (3

where f-(uj) is the cohesive force of the jth stretchable bond which has
been ex%ended a distance 2 u; from its equilibrium separation. A finite
range of interaction is assumed for this nonlinear cohesive force, so that
elements which are stretched beyond a critical separation, ¢ + 2 u_, are
taken to be ''broken'". The surface energy for the ''broken'" spring €lement
(J = 0 ton - 1) is given by one-half the area under the cohesive force
law curve, Yo¢. The strain (and/or surface) energy contained in the non-
linear element at the '"crack tip" is 2y(up)c, and represents the non-
linear elastic energy of that bond. All stretchable elements beyond j = n
are assumed to be linear elastic, f.(uj) =0(2u;) for j =n + 1, 5 @
The spring constant, o, is the linedr part of the nonlinear force law,

o = [dfj/d(Z uj)] at uj = 0. The total energy of the stretchable bond
elements, Ustretchs iS given by the summation of these contributions for
j=0,1, .

Combining these potential energy terms, the total potential energy of the
system is given by
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= - ) -2 2 2 3 2, 4
] 2Pu0+B‘E (uj+l ujug ) +2Yonc+-y(unjc+2a‘ b uj €}
j=1 j=n+l1

For a given applied force P and crack length a = nc, necessary conditions
for equilibrium configurations of the crack are (9U/du;) = 0, for
j=0,1, These equations of stability give an {nfinite set of
fourth-order difference equations which can be solved analytically for the

displacements uj. The solutions for j = 0, 1, ., n -1 are
u; = [E+(n-j)clu /€ + P(n-j)[2n%+3n(E/c)+1-j (j+n)]/68 (5)
and for j =n +1, n + 2, ... (i=1,2,...) are
- . sy . sin(ni) -Ai
U [unLOS(ﬂl) (Pn/2B8sinh}) sIa(n) ]e (6)
where

cosh(A) = 1/cos(n) = VT:T57§E— + /a/8B

and £ is a length defined by the spring constant ratio, B/a, according to

& = c/tanh()), or equivalently, (2B/a) = £2(£%-c?)/c*. The displacement of
the nth atoms, which interact through the nonlinear cohesive force f(uy),
is determined from the nonlinear coupling equation, (3U/3up) = 0

+ f(u) u
Eerd) oy ) = 0, (5i%><—ﬁ> ; %

2auC£ n a(2uc) 2¢ u,

The solution for up, from which the other displacements can be determined
by equations (5) and (6), can be illustrated graphically. Consider an
idealized nonlinear atomic force law and its corresponding surface energy
density, as plotted in Figures 2a and 2b, respectively. A graphic solution
of equation (7) for this nonlinear stretchable force law is shown in
Figure 3 for three ratios of bendable to stretchable force constants, B/a.
For given elastic properties (i.e., B/a) and a given position of the non-
linear, stretchable spring element (i.e., n), there exist a range of
applied loads P, over which equation (7) has three solutions for up. The
first and third solutions, denoted on the figure by up (1) and up (3),
respectively, correspond to stable equilibrium configurations for cracks
of length a = nc and a = (n+1)c, respectively. For the first solution,
the crack-tip bond is just beginning to see the influence of the nonlinear
elastic region; whereas, for the third solution, the crack-tip bond is
linear elastic by assumption, and the last broken bond has started to heal
nonlinearly. Viewed in multi-dimensional configuration space, the total
potential energy as a function of displacements, U = U[n, Ug, Ui, ... u:,
-], has a relative minimum at configurations corresponding to both J
u, (1) and u, (3). Topological arguments require that at least one saddle
point exists between these two minima. Since the configuration corres-
ponding to u, (2) is the only possible candidate for an extremum, this
configuration is the required saddle point.
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Unstable bond rupture occurs when the applied force P is increased to a
critical value P,, so that solutions up (1) and up (2) coalesce to give
o= ¥lu, (1] = Y[up (2)]. Spontaneous bond healing occurs when the
applied ?orce is decreased to a critical value P_ so that solutions u, (2)
and Uy (3) coalesce. In the intermediate regime of applied force,

P_ <P <P, the crack is lattice trapped. As noted by Thomson et al [5],
increasing the ratio of B/a (that is, "stiffer" bendable spring elements
and/or "softer'" stretchable spring elements) results in a decrease in the
lattice trapping regime. In constast to their model, however, lattice
trapping will vanish for some critical finite ratio of spring constants,
B/a (the upper curve in Figure 3). Thus, the existence of lattice trapping
depends on the elastic properties of the solid. In general, the nonlinear
nature of the crack-tip bond tends to decrease the range of lattice trapping
in comparison to their ""bond-snapping" model.

ONE-DIMENSIONAL CONTINUUM MODEL

In order to compare these results with the macroscopic surface energy Yos
it is necessary to obtain a continuum model for the same type of crack.
The simplest approach is to take the linear-elastic continuum limit of the
total potential energy of the system, and use the Griffith approach. The
potential energy of the system can be calculated by substitution of
equations (5) and (6) into equation (4). The energy contained in the
bendable and stretchable bonds is given by

Ubend + Ustretch = Pu0+2yonc+[Zy(un)c-unf(un)] 3 (8)

For linear elasticity, the term in square brackets vanishes, yielding the
usual fracture mechanics relationship that the strain energy in the bendable
and unbroken stretchable bonds is equal to one-half the work done by the
external force, Woyt/2, or “Uoxt/2-

To obtain the one-dimensional continuum model, the limits as n - « and

¢ > 0 is taken in such a manner that nc + a, and Bc?® and a/c remain con-
stant.  [The bendable spring constant 8 must scale as c-° (stiffen) in
order to maintain a finite displacement at the zeroth atom for an infinite
number of small spring elements. For this stiffening, the stretchable
elements must soften proportional to c to maintain a non-zero crack-tip
displacement. | Taking this limit and setting (3U/da) = 0, gives the
continuum relationship,

P(a+f) = VZRedy, , (9

which is analogous to the force-crack length relationship for the double
cantilever beam. Since equation (7) has the same form as equation (9),
effective surface energy densities Yy, can be defined from equation (7) for
the discrete lattics model, analogous to equation (1).

DISCUSSION
When a crack is lattice trapped, thermally activated subcritical crack

propagation, or crack healing, is possible [1, 2, 7]. Previous treatments
used a modified continuum model to predict the character of the thermally
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activated crack growth. Since the present model predicts the configuration
of the saddle point, it is possible to calculate the forward and backward
activation energy barriers within the framework of the model. The forward
activation barrier is given by AU, = U[...up (2)...] - Ul.ooup (1) .05
and the backward barrier is given by AU_ = UL. . .iiy 623w : ] - Ul...up (3)...].
When the applied force is P,, the forward barrier vanishes and catastrophic
rapid fracture ensues. Similarily, spontaneous crack healing occurs at

P_. The equilibrium thermodynamic (Griffith) condition corresponds to an
applied force P; at which the forward and backward energy barriers are
equal. Since Py is always bounded by P, and P_, the Griffith thermodynamic
condition must always lie within the rapid fracture and spontaneous healing
limits. The regime of applied forces for thermally activated subcritical
Crack growth is between Pg and P,, where rapid fracture occurs.

The result obtained by Esterling [3], vy, < y_, implies, therefore, that

the macroscopic thermodynamic surface €nergy, Yo, 1S not related to the
microscopic thermodynamic surface energy, Y;. This apparent ''paradox'

is best illustrated by two examples: for the cohesive force law plotted

in Figure 2, flup) = a(2 un)(l—un/uc)z, equation (7) with £ = 3c¢/2

(or B/a = 45/32) gives the central curve of Figure 3. The lattice trapping
regime is given by

Y+/Yo = 6/5>1 and Y_/Y0 = 250/243 > 1

Thus, for this choice of nonlinear cohesive force law the macroscopic
surface energy density Yo 1s not bounded by the lattice trapping limits

Y, and Y_, similar to the findings of Esterling [3]. However, the present
model is not self-consistent for this force law and choice of elastic
constants. This inconsistency is easily seen from Figure 3. As previously
mentioned, u, (3) is the solution for the displacement of the nonlinear
atom at n which is one atomic spacing behind the crack tip at n + 1. Using
Un (3) the crack-tip displacement can be calculated from equation (6). For
self-consistency this displacement should correspond to solution 1 of
equation (7), ups; (1), when the nonlinear spring element is assumed to be
at n + 1. This is not possible in general, since there is no ''weakly
interacting" nonlinear spring element one lattice spacing behind the non-
linear atom at n + 1. That spring element has been assumed to be "broken'.
In order to reduce this inconsistency for an arbitrary nonlinear cohesive
force law, additional nonlinear interactions must be included (i.e:5 @
larger crack-tip cohesive region). The feasibility of this extension is
presently under investigation.

A second example more clearly illustrates that this inconsistency in the
present model is the probable cause of the macroscopic surface energy
density lying outside the lattice trapping regime. A cohesive force law
(see Figure 4) is chosen so that the conditions previously mentioned are
self-consistent. For this nonlinear cohesive force law,

P/P0 = W/V@+W_

where

u
Y = ( £ C><~"‘> and y o= <5'—C> )
+ 2c u - 2c

()
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Thus,

Y+/YO = W+/W_ > 1 and Y_ /Y Y /Y, <1

(e}

For a given nonlinear bond at n, calculation of the applied force P; when
the forward and backward activation barrier are equal gives yg/v, =
(PG/PO)2 = 1. Thus, in this case, not only does Yo lie within the lattice
trapping range, but it is also equal to Yg-

CONCLUSIONS

It appears that the result obtained by Esterling, vy, < y_ <Yg £ Y4, for
some nonlinear cohesive forces might be due to an assumed linearity of
atomic interactions beyond the crack-tip bond, which is not necessarily a
self-consistent assumption. In one case where the assumption of linearity
was forced to be satisfied in the present model, not only was the macro-
scopic surface energy density bounded by the lattice trapping limits, but
it also was equal to the Griffith thermodynamic value. This explanation,
however, requires further investigation, since the possibility exists that
the microscopic and macroscopic thermodynamic surface energies are not
equivalent.

It is interesting to note that the model is self-consistent as a stress
corrosion model. A two step process is required to advance the crack by
one atomic spacing. The crack-tip bond is first broken by a thermally
activated process. The activation energy barrier for this process, AU,,

is easily calculated within the framework of the present model. Now, the
strong linear bond which was originally one lattice spacing ahead of
crack-tip is partially exposed to the corrosion environment and can be
corroded by a chemical activation process to return the crack-tip status

to its original configuration with the crack length advanced by one lattice
spacing.
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Figure 1 Quasi-One-Dimensional Lattice Model of a Crack
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Figure 2 (a) Idealized Atomic Force Law

(b) Corresponding Surface Energy Density

Also Plotted are the Linear Elastic Relations
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increasing
8/a |

lattice
trapping
vanishes

strong lattice trapping

Figure 3 Graphic Solution of equation (7) for the Cohesive
Force Law in Figure 2. The Three Ratios of 8/a Vary
Between Strong and Vanishing Lattice Trapping

(a)

f(un)

Y(u)

(b)

Figure 4 (a) Cohesive Force Law

(b) Corresponding Surface Energy Density
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