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THE MODIFIED WESTERGAARD EQUATIONS *

R. de Wit** 3

INTRODUCTION

Sih [1] and Eftis and Liebowitz [2] have pointed out that the Westergaard ‘
method, which applies to a certain class of plane problems in linear

elasticity and is most frequently used in fracture mechanics [3], suffers

from a restriction. The restriction is essentially the following: In

symmetric problems (mode I), the Westergaard function allows only a hydro-

static tension for the remote state of stress. This means, for example,

that the simple case of uniaxial tension is excluded from this formulation

(with or without cracks).

The above authors corrected this shortcoming by appending constant terms

to Westergaard's stress equations. They did this by appealing to the
Goursat-Kolosov and MacGregor complex formulations of the problem. The
present note shows how those additions to the Westergaard functions can

be made in a more straightforward way without reference to the more sophis-
ticated representations. It is done by simply adding the real part of a

term in z? to the Airy stress function of Westergaard.

WESTERGAARD'S FUNCTION

The classical problem of plane isotropic elasticity is set up in terms of
the Airy stress function ®, which satisfies the biharmonic equation [3, 4]

R £

V2 (V2%%) = 0 (1)

and from which the stresses can be derived as follows

i
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For mode I Westergaard then gave the Airy stress function in terms of the
analytic function Z1(z) of the complex variable z = x+iy as follows: E
= _ i
% = Re ZI +y Im ZI , (3) E

where dE/dz = Z and dZ/dz = Z. For mode II he gave it in terms of another
analytic function ZII(z) as follows:
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= - z &)
$ = -y Re ZII

Most of the classical results in fracture mechanics have been de?ived
from these equations by suitable choices of Westergaard's analytic func-
tions Z.

THE MODIFICATION

Muskhelishvili [4] has shown that it is possible and also convenient to
write the Airy stress function as the real part of a complex but not ne-
cessarily analytic function, as follows:

® = Re {z*¢(z) + x(z)} R (5)

where the Goursat functions ¢(z) and x(z) are analytic. Now, if the func-
tion x(z) includes a term in the analytic function z2, then we see from
(2) that this would add at most constant terms to the_stresses. HenceT
this provides a very simple way of making the correction proposed by Sih
and by Eftis and Liebowitz.

If we write the Goursat functions in terms of the Westergaard functions
as follows:

B = %(71 . & 711) , (63)
= 1 (= : T o1 : 2 6b
X = ZI - §-<ZI - i ZII) z 5 (A + iB)z* , (6b)

then the resulting Airy stress function is by (5)

E = = 1 2_,2 7
P = ReZI + yImZI - yReZII 5 A(x%-y“)+Bxy . (7)

The first two terms in this expression are the same as (3), the third is
(4), and the fifth and sixth are the correction terms. The stresses
follow from (2)

y! ! 8a
o] = ReZI - yImZi + ZImZII * ReZII + A, (8a)
- - ! - 8
Oy = ReZI + yImZi yReZII A, (8b)
= -y -y te = B o (8¢c)
ox = ReZi + ReZII ImZII

The displacements in plane-strain can be shown to be
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i

(1-2v) ReZ + Ax + 2(1-v) ImZ

Zpu 11

- yImZ * yReZII - By , (9a)

I I

2uv = 2(1-v) ImZ.

g = yReZ

[ - Ay - (1-2v) ReZyy - yImZy - Bx , (9b)

where 1 is the shear modulus and v Poisson's ratio. Equations (8) and (9)
are the basic results of Sih and Eftis and Liebowitz.

The rotation of the medium is given by

S1fv o
W=7 <Bx By) ' (10

By (9) the rotation is then easily expressed in terms of the Westergaard
functions as follows

pw = (1-v) (ImZ -ReZ ) . (11)
APPLICATTIONS

(a) Constant Stress Without Cracks

We obtain case of a constant stress field in the medium by taking constant
(complex) values for the Westergaard functions

ZI =(C + iDh , (12a)

ZII = E + iH . (12b)

The values of the constants C, D, E and H are determined by the boundary
conditions. Then the stresses are from (8):

g, =C+2H+ A, (13a)
XX

g =C-A, 13b
yy (13b)

Oxy =E - B (13¢)

We see that there are now enough constants available to obtain any arbitrary
set of stresses.

However, for mode I, E = H = 0, without the correction terms, A = B = 0,
only hydrostatic tension is possible, Oy, = O = C, Oyy = 0. This is

the nature of the restriction on Westergaard'sS original’ equations, as we
mentioned in the Introduction. The correction term A makes it possible
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in mode I to have Oyxy differ from Oyy. The simple case of uniaxial tension
is then given by A = - C.

We note, however, that the correction terms are not strictly necessary for
a completely arbitrary choice of stresses, if mode§ I and II are combined,
for the term H in (13a), which comes from mode II in (12b), also allows

us to choose Oyy different from Iyy in an arbitrary way.

The constant D in (12a) does not play a role in the stresses (13). It is
related to the rotation of the medium, together with the constant E, as can

easily be deduced by substituting (12) into (11):

pw = (1-v) (D-E) . (14)

(b) Small Crack

This is the classical case of an infinite medium with a centrgl c?ack
of length 2a along the x-axis. The solution to this problem is given by
the Westergaard functions

Z; = o(1-a%/22) " s c+ iD , (15a)

Z = t(1-a2/z2) ™ + E+ iH , (15b)

where the values of the constants 0, T, C, D, E and H are determined by the
boundary conditions.

One set of boundary conditions is that the crack surface is stress free

g =0 =0 for y =0, ‘xl <a. (16)

Yy xy
From (15) and (8) this leads to the relations

C = A, E=38. a7

Another set of boundary conditions is given by the asymptotic behaviour

of the stresses at remote distances from the crack. From (17), (15) and (8)

we find at |z| = =
a =0 + 2(A+H) , (18a)
XX
c_ =0, (18b)
Yy
= (18c)
oxy T .

188

Part V - Analysis and Mechanics

We see therefore that o and T in (15) represent the remote normal tensile
and shear stress applied to the cracked medium. From (18a), we see that
the remote tensile stress parallel to the crack can be arbitrarily adjusted
to any desired value, either by fixing C (= A) in mode I or H in mode II.
This does not affect the first terms in equations (15), which contain the
essence of the crack field.

The constants E (= B) and D play no role in the stress field of the cracked
medium. From (11) it can easily be shown that they are related to the ro-
tation of the medium. It fact, for |z| = = we find

uw = (1-v) [D-E-t] . ] (19)

Our result that B does not appear in (18) contradicts a conclusion by Sih,
who stated that B cannot vanish for a non-trivial solution. The reason
for this is that Sih made the unnecessary assumption that E = - T in his
equation (14), which corresponds to our equation (15b).

CONCLUSION

We have shown that a correction, proposed by Sih and by Eftis and Liebowitz,
to remove a restriction on Westergaard's equations, can be made in a very
simple way by adding an elementary term to the Airy stress function.

The result is illustrated by two very simple examples. However, applica-
tions to more complex problems, such as those discussed by Eftis and
Liebowitz, can of course be made in a similar straightforward manner.
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