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GREEN'S FUNCTION FOR THRU-CRACK
EMANATING FROM FASTENER HOLES

T. M. Hsu* and J. L. Rudd**

INTRODUCTION

The application of fracture mechanics to fatigue crack growth and residual
strength analyses has resulted in much progress during the last decade,
Yet the presence of cracks in engineering structures still poses many
serious research problems which remain to be solved. One such problem is
a crack emanating from an inelastic field near a fastener hole, such as
produced by an interference-fit fastener or a cold-worked hole.

Fatigue cracks usually originate in the regions of high stress concentra-
tion, which exist notwithstanding careful detail-design procedures.

Hardly any assembled structure is free of geometric discontinuities, such
as fastener holes and access holes. Since a hole is a source of stress
concentration, and since there may be many holes involved in any one
Structure, it can be anticipated that fatigue cracks will start at some

of these holes during its service life. A review of U.S. Air Force air-
craft structural failures [1] revealed that cracks emanating from fastener
holes represent the most common origin of these failures.

The stress-intensity factor, which generally depends upon crack length,
remote loading and structural geometry, has been employed to characterize
the severity of the crack-tip stress field. To date, there has been much
useful work done on the problem of determining reliable stress-intensity
factors for cracks emanating from fastener holes. Almost all of these
analytical determinations are based upon modifications of a solution
obtained by Bowie [2] for cracks emanating from a circular hole in an
infinite elastic sheet. For cracks emanating from an inelastic field
near a fastener hole, the stress intensity factors could be estimated by
using the weight function approach as discussed by Bueckner [3 - 6] or the
reciprocal theorem proposed by Rice [7]. Both techniques require a
knowledge of the unflawed stress distribution in the region of the hole.
Paris et al [8] has combined these techniques with the finite-element
method to develop a weight function for the single edge cracked strip.

The closed form expressions for the weight function for edge cracks [4, 9],
centre cracks [10] and collinear cracks [6] in a wide panel are available.
But, the closed form weight function for cracks emanating from a fastener
hole is not available. Development of such a function will be very dif-
ficult, if not impossible. Therefore, the weight function for a straight
crack has sometimes been used to estimate the stress-intensity factor for
radial cracks emanating from a circular hole, [11 - 13]. For a large
crack, where the influence of a fastener hole on the stress intensity
factor is small, such an approximation gives good results. However, for
the case of a small crack, say a/r £ 1.0, such an approximation could be
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significantly in error. Grandt [14] used the reciprocal theorem due to
Rice [7] to develop the following equation which estimates the Mode I
stress intensity factor, Ky, for cracks emanating from any type of circular
fastener hole:

a
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K —fp-h dr = ¢ f p(x) 55— dx ()
T B %

where p is the stress vector on the boundary; h is the weight function;

n is the y-component of the crack surface displacements; KB is the Bowie
solution for the stress intensity factor; and H is an appropriate elastic
modulus: it is E/1 - v? for plane strain and E for generalized plane
stress. Since the closed form expression for n as a function of the crack
length a is not available, it was determined by fitting an equation to
the discrete displacements computed using the finite-element method for a
series of crack lengths ranging from a/r = 0.4 to a/r = 2.8. The stresses
and strains computed using the conventional finite-element method may be
fairly accurate. But the differentiation of an approximate expression
obtained by curve fitting finite-element results may not be warranted.

Two high order singularity elements have been developed at Lockheed-
Georgia. One takes only the symmetric terms in the Williams' series and,
hence, is applicable only to symmetric problems (K11 = 0); the other makes
use of both symmetric and antisymmetric terms and is applicable to un-
symmetric or mixed mode (KI and K11) problems. The efficiency and accuracy
of these elements has been demonstrated in reference [15]. In order to
obtain more accurate solutions for cracks emanating from a hole, the high
order singularity element for symmetric problems was used to compute the
Mode I stress intensity factor for a double-radial crack emanating from
an open hole and subjected to concentrated loads on and perpendicular to
the crack surface. The computed stress intensity factor was used to
develop the Green's function (equivalent to the nondimensional stress-
intensity factor) for a double-radial crack emanating from a circular hole.
In the case of mixed mode conditions, the corresponding Green's function
analogy to the symmetric case can be developed from the stress intensity
factor computed using the unsymmetric crack element for the same cracked
hole subjected to a pair of concentrated forces (equal and opposite in
direction) on and parallel to the crack surface. However, in this paper,
only the symmetric problem will be considered. Once the Green's functions
are available, the Mode I stress-intensity factors for cracks emanating
from any type of fastener hole can be calculated from a knowledge of the
unflawed stress distribution in the region of the hole.

DEVELOPMENT OF THE GREEN'S FUNCTION

Figure 1 shows the scheme of the linear superposition method. The stress
intensity factor of problem la is equivalent to the sum of that of
problems 1b and lc. Since problem 1b is crack free, the stress-intensity
factor of problem la is equivalent to that of problem lc. By idealizing
the stress in problem lc as N discrete loads, Pi,..., Py, then the stress-
intensity factor, for a given crack length a, can be computed from the
following equation:

N N
K(a) = 2 K, = 2 ki<xi’a)Pi<xi) (2)
i=1 i=1
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where kj(xj,a) is the normalized stress-intensity factor due to the ith
load, Py, applied at location Xj. For arbitrary distributed stress, J,
instead of discrete forces, P, equation (20) becomes

a
K(a) =f k(x,a) . o(x) dx (3)
o

By defining G = k(a/'n)”2 and £ = x/a and substituting them into equation
(3), one obtains

1
K(a) = 0 /Ef G(E) 6(a,E) . dE )
o
where 0g is the uniform far-field stress and g = 0/0qg is the normalized

unflawed stress distribution on the prospective crack surface.

For a straight crack subjected to two pairs of concentrated forces on the
crack surface as shown in Figure 2, the corresponding Green's function,

G, is
b K [o)" a+b)® a - b|"
o) 5@ fem) =l e

The Green's function G, for a double-radial crack emanating from a cir-
cular hole and subjected to two pairs of concentrated forces on the frac-
ture surface, as shown in Figure 3a, can be obtained from the computed
stress-intensity factor using finite-element analysis with inclusion of
the singularity element for various crack lengths a/r and b/a ratios as

follows:
a b)_KkK 2 6
G(f 3 a) - P m (a3

Due to the limitation of finite element methodology, when the concentrated
forces were applied close to the crack tip, say b/a > 0.9, the corres-
ponding Green's function was obtained using the central crack ;oluFlon by
idealizing the hole as a portion of a straight crack as shown in Figure
3b. The Green's function corresponding to this case is

12
4(1 + §j>
o I | /m (6a)
r’oa ( b)( b 2:)
1 - =1+ —+ —
: a a a
The computed Green's functions were then tabulated as a function of a/r
and b/a. For any a/r ratio different from those tabulated values, an

interpolation or extrapolation technique was used to obtain the corres-
ponding Green's functions.

With a knowledge of the Green's functions, G, and the stress, 0, on the
prospective crack surface with the crack absent, one can compute f?om
equation (4) the corresponding stress-intensity factor for any radial
crack from a hole.
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When crack face overlapping occurs or the applied force

Pj is in compres-

sion, the computed Kj in equation (2) will become negative. Physically,
1t means the crack surfaces are closed and react against each other.

Occurrences of such cases are illustrated in examples 3
computed negative Ki were set equal to zero.

For a case where there is only one crack emanating from

and 4, where the

a hole, instead of

redeveloping the associated Green's function, it was found that the fol-

lowing equation will give a good estimation of the stress-intensity factor:

one crack two cracks

)

where B; and B> are Bowie's factors for single and double cracks, respec-

tively.

EXAMPLE PROBLEMS

1. Open Holes

To chgck the validity and accuracy of the present solution, Bowie's [2]
§o{gt}on for a double radial crack emanating from an open hole in an
infinite plate was employed. By approximating the unflawed stress

distribution as

2. Neat-Fit Hole with Fastener Load Transfer

The normalized unflawed tangential stress distributions
perpendicular to the load-line in the hole of a 7075-T6

The corresponding
As can be seen, the

along the plane
aluminum plate

fitted with a Ti-6A%-4V titanium fastener are given in Figure 5 for

various percentages of fastener load transfer. The non-
{ntensity factors computed using those unflawed stresses
for a double crack emanating from the neat-fit hole are
Figure 6. Fronm this figure, one can see that the stress
for a neat-fit hole without fastener load transfer is lo
an open hole (shown as dotted line). However, when the
load transfer increases the stress-intensity factor incr
especially for short crack lengths. The computed non-di
intensity factor at the edge of the hole is approximatel
times the normalized unflawed stress at that location.
well with the edge crack solution. When the crack lengt
2¥2 times the hole radius, the effect of fastener load t
negligible.
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3. Interference-Fit Fastener Holes

The Green's function approach is also used to compute the stress-intensity
factor for a double radial crack emanating from an interference-fit
fastener hole. Figure 7 shows the unflawed stress distributions for an

figure, one sees that for a/r < 0.5, when the far-field loading (172 MN/m )
is removed, the computed K is less than zero. Physically, it means that
the fracture surfaces are completely closed and compress each other. The
effective stress-intensity factor Tange equals the difference between
curves 2 and 3. For a similar plate with an open hole subjected to

172 MN/m® far-field loading, the corresponding K (also AK) is plotted in
the same figure as dotted lines for comparison purposes. For small crack
lengths, the computed AK is much smaller for an interference-fit fastener
hole than an open hole. This explains why the crack emanating from an
interference-fit fastener hole grows much slower than the corresponding
crack in an open hole when the crack length is small. When the crack
length is longer than 3 times the radius of fastener hole, the growth
rates are about the same, since the effective stress-intensity factor
ranges are about the same. This indicates that the influence of the
interference-fit fastener is negligible when a/r > 3.

4. Cold-Worked Holes

Figure 9 shows the unflawed stress distributions in the region of a 4.4%
cold-worked hole in a 7075-T6 plate caused by 110 MN/m? edge loading and
subsequent unloading [17]. After the edge loading is removed, a residual
compressive tangential stress Temains at the edge of the hole (a/r < 1).
The computed stress intensity factors using the current approach is
presented in Figure 10 as dotted lines. Curve A is the computed Kpgy
corresponding to 110 MN/m? edge loading while Curve B is the stress-
intensity factor range Kpax - Kmin' Kmin was computed using the unflawed
stress corresponding to 5.5 MN/m* edge loading. For the same level of
cold-working (4.4%) and edge loadings (opax = 110 MN/m?, Omin = 5.5 MN/mz),
the stress-intensity factors obtained from crack growth tests reported

in references [18] and [19] and the one predicted using the linear super-
position method [18] are also included in the figure. As can be seen,
the current analysis gives an excellent correlation with the experimental
data.

CONCLUSIONS

The stress-
intensity factors for cracks emanating from any type of fastener hole were
able to be computed from a knowledge of the unflawed stress distributions
in the region of the hole and the developed Green's function.

solutions for open holes and neat-fit holes and correlate excellently
with data generated using cold-worked hole specimens. The approach can
also be used to estimate the Stress-intensity factors for cracks emanating
from interference-fit fastener holes.
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Figure 1 Schematic of Linear Superposition Method
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