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GENERAL NUMERICAL METHOD FOR THREE-DIMENSIONAL
SINGULARITIES IN CRACKED OR NOTCHED ELASTIC SOLIDS

Z. P. BaZant* and L. F. Estenssoro**

INTRODUCTION

The objective of this paper is to report preliminary results of a numerical
finite element study concerned with the elastic deformation field near the
point where a crack front edge intersects the surface of an elastic body.
The crack plane as well as the front edge are assumed to be normal to the
surface. However, the numerical method, briefly outlined herein, has a
general applicability to three-dimensional elastic singularities involving
singular points located on stress singularity lines, such as crack edges,
corners, notches, inclusion edges, etc.

The problem is of fundamental interest for the propagation of cracks inter-
secting a surface, and a solution is needed to assess the effect of thick-
ness of thin sheets, plates and layers upon crack propagation. A solution
of this problem has been attempted many times without success. Recently,
Benthem [1] presented an analytical solution.

Problems of similar type also arise in potential theory, where they are,
of course, much easier to treat. Very accurate analytical solutions of
certain three-dimensional singularities in potential theory have been
recently obtained by Morrison and Lewis [2], and by Keer and Parihar [3].

A general numerical method which is capable of handling any three-dimen-
sional singularity in potential theory has been developed in reference [4].
The basic ideas of the present solution, involving the separation of
variables postulated here in equations (1) and (11), and the use of finite
difference or finite element method to formulate and solve a large non-
linear generalized eigenvalue problem (equation (17) in the sequel), are
the same as those in reference [4].

VARIATIONAL EQUATION FOR THE EIGENSTATES

Consider a singular point, 0, located at a smooth singularity line 00'
which terminates at point 0 (e.g., Figure 1). Let r, 6, ¢ be a spherical
coordinate system centred at point 0, such that ray 9 = 0 coincides with
the singularity line. It will be assumed that in the vicinity of point 0
the displacement in r, © and ¢ directions can be expressed in the form

u=r'F(8,0) (1a)
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v = °G(6,¢) (1b)

r:‘H(e,cp) (1c)

=
i

Substituting these expressions into the well-known differential equations
of equilibrium in terms of u, v, w, it is found that the radius coordinate,
r, cancels out of the equations, and the following differential equations
of equilibrium in r, 8, ¢ directions in terms of functions F, G, H result:

B 1
X_ = (Q+2)(>\—l)[)\F+F+Ge+G cot § + —— H¢]- [()wl)Ge-Fee]
- cot 8|(A+1)G-F_ | + #[; F_-H-M, | =0 (2a)
¢} sin 8 [ sin 8 ¢¢p "9
Xg = (U#2)|AFg+2F +Gyo+Gy cot 6 - l_ .1 Hoy <= O 4 ]
sin%@ sin 8 % sin2g ¢

1 1
- 3 [Heq)*'H(p cot § - —— GM] + x[o\q)c-pe] =0 (2b)
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e ]: 0 (2¢)
sin 6 9

where v = Poisson ratio, Q = 2v(1-2v), and subscripts of F, G, and H denote
partial derivatives; e.g., Fgg = 32F/362. Furthermore, substituting equa-
tions (la - c¢) into the well-known expressions for spherical stress com-
ponents Ore""’0¢¢ terms of u, v, w, it is found that

S o= =X -G +F (3a)
ro ZGrA—l 6 )
1 5 1
= s IC
Sgg Grk"l %98 1[&F+ZF+G6+G cot 6 + R H¢] + 2(G6+F) (3b)
s = ——l———-o = H,-H cot 6 + i - G (3¢c)
8¢ ZGrk-l 8¢ 8 sin 6 "¢
S, =——— o0 ==L _F sam-y 3d)
r¢ - A1 Y09 T sind Do (3
2Gr
s = . o = QI}F+2F+G +G cot B + . H
0 AL Tod 9 sin 8 ¢
+ 7[——£~— H + G cot 8 + F (3e)
“lsin 8 9
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in which G = elastic shear modulus.

Point U is assumed to lie at the surface of the body. Expressions (3a - e)
may then be used to express surface conditions at surfaces consisting of
radial rays emanating from point 0. Let 1 = (ng,ny) represent the unit
normal to the surface of the body when plotted in the (6,9)-plane, with 6
and ¢ being regarded as the cartesian coordinates in such a fictitious
plane; thus, n ~ (d¢/ds,-d9/ds) where s = length of boundary curve, or
na/n¢ = -d¢/d® where d¢, d6 are increments along the boundary. The boun-
dary condition of a free surface may be written in the (8,¢)-plane in the
form

b = s Mg sin 8 + sr¢n¢ =0 (4a)
Pg = Sgghg sin 6 + Seolg = © (4b)
Py = Sgog sin 6 + Sty = 0 (4c)

The differential equations (2a - c) together with the boundary conditions
(4a - c¢) may be combined to form the following variational statement

ff[xr6F+Xe<SG+X¢6H}sin8 d46d¢ f[pr6F+p86G+p¢’6H]ds =0 (5)
A S

in which s = length of the boundary of the region in the (8,¢)-plane;

ds? = d8%+dd?; A = area of this region; and variations &F, &G, SH are
arbitrary continuous functions of 6 and ¢ which have piece-wise continuous
derivatives and satisfy all displacement boundary conditions (if any).
Conversely from the fact that equation (5) must hold for any kinematically
admissible functions SF, 8G, SH it follows that equations (2) and (4) must
be satisfied. Thus, equation (5) 1is equivalent to equations (2) and 4).

Equation (5) involves second derivatives of F, G, H (which are contained
in the expressions for Sr8,.-+>5¢p). To be able to apply the finite
element method, it is necessary to transform equation (5) to a form which
involves no higher than first-order derivatives of F, G, H and of &F, &G,
SH. At the same time, it is necessary that during this transformation the
boundary integral in equation (5) be eliminated (or else natural boundary
conditions would not be automatically satisfied when the finite element
technique is used). Indeed, a transformation by Green's integral theorem,
applied in the Cartesian (6,¢)-plane, has been found, such that both
objectives are reached simultaneously. The resulting variational equation
is

® SF+@ . OF +0. 8F +¢.8G+¢. 8G +3. &G +o OH
/f[F Bg 8 TF, 0 GRG0 TTG o H
A

+¢H 0H6+¢H SH

siné déd¢ = 0 (6)
) ¢a ¢:’

in which the following notations are made
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1 .
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+ G cot O + F] }

Alternatively, it is possible to derive equation (6) from equation (5) by
means of Stokes theorem applied on a unit sphere r = 1, domain A being
considered as a domain on a unit sphere. It has been checked that this
gives the same result. It may be also checked that equation (6) can be
transformed by means of Green's theorem (or Stokes theorem) back to equa-
tion (5).

The variational statement of the problem is: Functions F, G and H are the
solution of the problem if and only if they satisfy equation (6) for any
kinematically admissible variations 8F, 8G, § #

Existence of variational equation (6) which contains no boundary integral
indicates that natural boundary conditions (4) will be automatically ful-
filled when the finite element method is used.

It is particularly noteworthy that the integrand of equation (6) is non-
symmetric (and that 0f - RPNRER H¢ are not partial derivatives of some function
?). This means that the variational principle cannot be written in the
form of a stationary principle, W = 0 (or minimum principle, W = min.).

At first this might seem surprising for an elastic material. However, a
deeper analysis indicates that it must be so. To clarify it, assume that
the integrand of equation (6) is symmetric with regard to F, G, H. Then

Part V - Analysis and Mechanics

the discrete eigenvalue problem for A resulting from equation (6) as indi-
cated in the sequel would have a symmetric matrix, and this would imply
that all roots A would have to be real. This is not possible because the
same variational equation (equation (6)) must hold also for problems with
two-material interfaces, which are known to exhibit oscillating singular-
ities for which A is complex. Hence, equation (6) cannot be symmetric.
This contrasts with the analogous potential theory problem, for which a
minimum variational principle in the (6.¢)-plane does exist (see reference
[4]), with the consequence that in potential theory the eigenvalues )\ are
always real.

The basic variational equation (equation (6)) can be also derived from the
principle of strain energy, in a similar way as a minimum principle has
been derived for the potential theory (equation (18) of reference [4]).
The derivation is more direct but it involves certain steps which are
difficult to justify without recourse to the derivation just presented.
These steps involve the facts that the factor r* must be treated at first
as an unknown function, R(r), even though r* is known in advance to satisfy
all governing equations, and that the integral must be integrated by parts
with respect to dr, leaving the question of the meaning of the boundary
terms arising from integration by parts when actually no boundary inter-
secting the radial rays is specified in the eigenstate problem.

FINITE ELEMENT FORMULATION IN (6,¢) PLANE

Compared to finite difference solutions, a finite element solution of the
variational equations (6) - (7) has the tremendous advantage that stress
boundary conditions are automatically implied whenever a free boundary is
considered. Therefore, the finite element technique has been selected to
approach the problem.

Functions F, G and H must exhibit gradient singularities at the point where
they intersect the gradient singularity line (crack edge) emanating from
point 0. Such functions are not suitable for numerical solution, since

it is known that the rate of convergence of the finite element method with
piece-wise polynomial distribution functions is 0(vh) when there is crack-
type singularity, while without singularity it is 0(h®), h being the maxi-
mum element size. This difficulty could be avoided, e.g., by using sing-
ular finite elements near the singularity line. But a more convenient
method has been proposed and used with success in reference [4]. In this
method the displacements in r, 9, ¢ directions are expressed as

u= £'rf £(8,0) = £ £(9,0) )
v =2 g(8,0) = 2P 4(0,9) (8b)
w= 1P he,0) = 2P n(o,0) (Ge)

in which p = exponent for the field near the singularity line; A = n+p;
Ty = rp; P = any chosen smooth continuous function of 6 and ¢ which is
non-zero everywhere except on the singularity ray 8 = 0 and in the vici-
nity of this ray (i.e., for 8 - 0) represents the distance from the ray
measured on a unit sphere. Possible choices are p = § or p = sin 8. The
latter choice will be made here, and p will then represent the exact
distance from the ray not only for 8 + 0 but everywhere in the domain.
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(It must be noted, however, that 0 = sin § cannot be used when 6 = T is
part of the domain and no line of singularity exists at 6 = m.) For crack
cdge, p = 12, which has been considered in all calculations presented

here. (However, exponents P =0,1,... are also possible [1]. It will be
convenient to introduce the notations:
E(8,0) = of £(8,9) [op = (sin e)P] (92)
G(8,9) = 0¥ g(8,9) (9b)
H(8,9) = 0P h(8,9) (9¢)

If the field near the singularity line varies as o2 and p is set equal to
U2, functions f, g, h may not exhibit an{ singularity at 6 = 0. This would
make the conver%ence rate quadratic, O(h®). On the other hand, if compon-
ents of types p? and p° (possibly with components of other exponents)

were both present in the solution, as is indicated by Benthem's solution
[1], the rate of convergence would not be quadratic, but slower than
quadratic.

Choosing a finite element grid in (6,9)-plane, functions F, G, H within
each finite element may be represented as

F=J, F', F'=oP¢ (10a)
G=1], x,65, G =pPg (10b)
H=J, XH, u =oPp' (10¢)

in which X (i = 1,2,...,M) are the nodal values of f, g and h such that
fio = £3k-2 = Xz o, gy = g3k-1 = X3k-1, hk = h3K = X3y, k being the mode
number; and fi, gi, hl are the corresponding distribution functions within
tne finite elements, normally chosen as polynomials in 6 and ¢. The vari-
ations of functions F, G, H and their derivatives may now be expressed as
follows:

= 8 o § i
O0F = . F'8X., 66 =).G 8X., S8H = ). H’8X. 11
L j Lj 678K Iy Hex, Bl
S =V j - ) = J
SFq gj F38X;, 86, Zj GoX;,  GHy Zj Hg 8X; (11b)
SF, = 3. FIsX., oG, = J. Glsx., 6H. = V. wex. 11
o = Ly F8%y, 66, = I Guens, omy = I Hlex, (11e)

Substituting equations (l0a - ¢) and (lla - c¢) into equation (7), it
follows that

~ i . i — i
o, = g o Xy, o = g O Xiseuonby = g o, K (12)

in which
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o = [QU-A)+2) [L)\+2)Dpfl+(Op]egl+opgg+ppgl cot 8

P o
e poi i
- h¢} 23 (A+2)pPgt, @Fe L
i1 Pei, . p, i.pi pi
®H$ sin 8 {[Q(A*Z)D £+ (") gg +oPgg+ePg" cot 9
. _oF hi]+2[ o ji,pi, pfi]} -
sin 8 "¢ sin g 978 ¢ p

Finally, substitution of equations (11) - (13) into variational (6) yields
a discrete variational equation of the form

MM
) [ ) ky X [8%g = 0 (14)

j=1 Li=1

in which kij are stiffness coefficients expressed as follows

- L o of i o ol o A Joal pdosd oJ 21 ]
kij /f;% F 0 FGWF.FN@G G +4>G L’e"q)c b¢+<I>H H
Fy 9 ¢ 9 )

iogodgl. .
+¢H6H8+®H¢H¢$sln 8 dode (15)

Note that the stiffness matrix [ki;] is non-symmetric; i.e., kij # ky; in
general. The variational equation” (14) must hold for any choicée of %Xi
(i =1,...,M), and this requires that

M

izl kijxj 0 (i=1,...,M. (16)
This is a system of M linear homogeneous algebraic equations, representing
an eigenvalue problem. All stiffness coeficients kijr not just the dia-
gonal ones, depend on singularity exponent A, and so the eigenvalue problem
is of the generalized type. Furthermore, it is easy to see that ki are
polynomials in A, as well as in Poisson ratio v (when multiplied by 1-2v);

ki = ki 00w, (17)

So, the generalized eigenvalue problem is a non-linear one. Various me-
thods of numerical solution of this problem have been discussed in detail
in reference [4], and method B from page 230 of reference [4] has been
used here to search for the root A. The root of smallest value (or of
smallest Re(A), in case of complex root) is of main practical interest.

A method of solution when root A is complex has been described in more
detail in reference [5] in connection with another problem.
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NUMERICAL RESULTS FOR CRACK EDGE TERMINATING PERPENDICULARLY AT SURFACE

The method of solution just outlined has been programmed in FORTRAN IV.

The finite elements were chosen as simple four-node quadrilaterals (with

12 degrees of freedom), obtained by the mapping of a rectangle on a

general quadrilateral in the (8,9)-plane. The distribution functions for

F, G and H on the original rectangle have been considered as bilinear in 0
and ¢, i.e., as a+bG+c¢+d6¢p. The stiffness coefficients ki; were calculated
by Gaussian numerical integration, using Y integration points.

The programme is general and capable of handling various situations, such
as intersections of crack edge with body surface of any orientation at

an arbitrary angle, corners of any angle on the crack edge, intersection
of a line notch with a surface, pyramidal notches, possibly intersecting
with cracks, etc. However, so far only the case when A is a real number
has been programmed. The programme will be also capable of handling cases
when complex A must be expected, such as intersections of crack edges with
two-material interfaces. But this would require conversion of the FORTRAN
programme to complex arithmetic and a generalization of the root search
subroutine; this has not yet been done. The results presented in the
sequel are all obtained under the restriction that root A is real.

The correctness of the programme has been checked by a number of cases of
known solution. First, elementary solutions of various special cases for
the domain 0 <86 <m/2, 0< ¢ < 7 have been substituted in equation (16).
[hese were: (a) three rigid body rotation fields, for which A = 1, p=0;
(b) the field of homogeneous uniaxial stress in the direction 6 = /2,

b =0, for which A = p = 0; (c) the near tip plane strain field for a mode
I crack with v =0 (A = p = u2); and (d) the same for mode II crack

(A = p = u2). In all cases the right-hand sides of equations (16) for all
L were negligibly small (compared to Zilkij|[Xj]). Also substituted were:
(e) homogeneous strain fields, with any of the six strain components being
constant (A = 1, p = 0); (f) plane strain mode I and mode II near tip
fields for various v (A = p = 12); (g) antiplane mode III near-tip field
(A = p = 12); these fields cannot satisfy equations (16) for the nodes on
tne body surface, but they must satisfy them for all other nodes, and this
was found to be true.

The programme was then applied to analyzing the field near the terminal
point 0 of a crack whose plane and edge are normal to halfspace surface.
Because of symmetry, it is sufficient to consider the domain 0 < 6 < /2,
0 < ¢ <7 (Figure 1), which has a rectangular shape in the (9,¢) plane.
The stress boundary conditions on crack surface (¢ = 0) and on half-space
surface (8 = m/2) are automatically satisfied, the boundary condition at

8 =0 (pole) are irrelevant and were considered also as a free boundary,
and tne boundary conditions on the side ® = 7 (symmetry plane) must ensure
a statically determinate support of the body and at the same time properly
reflect the symmetry and antisymmetry properties of displacement field in
the plane ¢ = 0 that is normal to crack front edge. These conditions are
achieved, in case of mode I crack, by imposing at the nodes with 6 = 7 the
condition w = 0 or h = 0, and only this case has been considered thus far
in the solution of non-trivial cases. In case of mode II crack, anti-
symmetry of displacements in the plane ¢ = 0 with respect to crack front
cdge requires that u sin 8 = v cos 8 = 0 for f sin 0 = g cos B = 0 at

? = m; and in case of mode III crack, antisymmetry of displacements in the
plane ¢ = 0 with respect to the ray 8 = ¢ = m/2 requires that u cos 0 -

vV sin ©® = 0 or £ cos 8 - gsin 8 = 0 at 8 = 7.

Part V - Analysis and Mechanics

To obtain a picture of accuracy and convergence, root A was first solved
for v = 0, in which case the solution is known to be A = 0.5. Grids of
increasing numbers of finite elements, with N = 18, 32, 72 and 128 elements
(and 84, 135, 273 and 459 degrees of freedom), were used. In the (6,¢)-
plane all elements were rectangular and identical; the subdivisions of the
region in the 8- and p-directions were 3 x 6, 4 x 8, 6 x 12, and 8 x 16.
The results of these calculations are given in Figure 3; see line v = 0.
For the finest grid used (128 elements, 459 simultaneous equations), the
computed value of the root was 0.5097, which is still 1.9% in error. This
indicates that for accurate calculation of A a finer grid and more compli-
cated finite elements will be required. Work in this direction is in
progress.

Nevertheless, even from the results for the relatively crude grids used
thus far, interesting results can be extracted if the practical convergence
is studied more carefully. It is well known that ordinary finite element
method exhibits quadratic convergence, i.e., it has error of the order
V(h3), h being the maximum size of the finite element, provided that there
are no singularities within the domain. Functions f, g, h and their
gradients are nonsingular, and so the convergence should be also quadratic
in the present case. Noting that h? ~ I/N, it follows that error ® k/N
where k = constant and N = number of finite elements. This relation should
hold accurately when N is sufficiently large. Hence, log(error) =

log(A - 0.5) = log k - log N = log k - 2 logyN, which indicates that the
plot of log(error) versus log/N must become a straight line of slope -2
when N is sufficiently large. This plot is shown for v = 0 in Figure 2,
and it is seen that the plot is indeed a straight line, and that the slope
of this line is exactly -2.0. Thus, for v = 0 the present formulation
seems to follow a systematic pattern of quadratic convergence already for
rather crude grids. This can be used to advantage in extrapolating the
convergence pattern and estimating the results for N + =,

Thus, expecting that A - Aexact = k/N, the numerical results for various
values of v obtained with various numbers of finite elements may be used
to construct a plot of A versus 1000/N (Figure 3). Again, for quadratic
convergence these plots would have to be straight lines for a sufficiently
large N. According to Figure 3 this seems indeed to be true. Therefore,
straight lines (regression lines) have been passed in Figure 3 to obtain
estimates of the values for N -+ @, i.e., estimates of the exact solution.
In case of v = 0, the point N -~ = falls exactly in 0.5. However, calcul-
ations with much finer grids will be required to make definite conclusions
about the values for N + o, Especially, caution is necessary in view of
the fact that the estimates for N + « significantly deviate from Benthem's
solution [1] (Figure 3). According to Benthem, the field in equation (8)
with p = ¥2 is not the complete solution, unless v = 0, and components of
the form of equation (8) but with p = 0 and p = 1 also significantly
participate in the exact solution. If this were indeed true, the conver-
gence of the present method could not be quadratic, O(hz), but slower;
then, for high N the points in Figure 3 would have to begin 'deviating from
a straight line. Based on the crude grids used thus far, this possibility
cannot be discounted. If p were set equal to 0 rather than Y2, the con-
vergence rate would then be O(/H); accordingly, the results would have to
give a straight line in a plot of X versus N_ *, regardless of whether
components with p > 1 are present. This case must be examined when results
for very fine grids become available.

The solutions of A for N - = obtained in this manner for various v are
shown in Figure 4, along with the results for various grids. Also shown
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in Figure 4 is the recent approximate analytical solution by Benthem [1].

For values of v which exceed 0.4, the root search subroutine converged
poorly or not at all. In this regard, it is noteworthy that the lines for
a chosen number N of elements turn sharply upwards as v exceeds 0.4. The
search for root A may be gometrically interpreted as intersection of the
line of solution for constant N with the vertical line v = const. For

vV > 0.4 either the intersections occur at very small angles or (for low N)
no intersection seems to exist. To circumvent this difficulty, equation
(16) may be considered as an eigenvalue problem for v at a fixed A. Then
the solution represents an intersection of the line of constant N with the
horizontal line A = const. This intersection is at large angle and appears
to exist for v-values well over 0.4. So, the convergence should be rapid
and, indeed, this was found to be the case. The convergence should again
be quadratic, and so the plots of Vv versus 1000/N at constant A should

be straight lines. Numerical results have confirmed it. Passing straight
regression lines, similarly to Figure 3 (but for X = const.), the extra-
polated values for N + = have been determined. These values are also
plotted in Figure 4, and the solution is extended to v-values beyond 0.4.
However, when v becomes very close to 0.5, the present formulation breaks
down because the value of Q increases without bounds. A special programme
would have to be written for v close ‘to 0.5.

However, in view of the Benthem's solution, the same cautious view as ex-
pressed earlier must be adopted with regard to extrapolations to =, It
may also be noted that the line for N + = in Figure 4 seems to be aiming
into the point A = 1 and v = 0.5. Although this point has been given by
Benthem [1] as a point of exact solution, this would mean that there would
be no singularity for v = 0.5, and this would be in disagreement with
Benthem's experimental study which indicated that for v = 0.5 the singu-
larity exponent A should be much less than 1 and closer to 0.5.

CONCLUSION

A general numerical method for determination of three-dimensional singular
fields in elasticity has been presented and verified. However, it would
be premature to make conclusions on the basis of the numerical examples
presented here.
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APPENDIX - NOTE ON THE ANGLE OF PROPAGATING CRACK

From the practical point of view, the case of a propagating crack is of
main interest. There is no reason why the angle B of the crack front edge
with the surface should have the value of m/2 which has been considered in
the preceding analysis.

There exist certain simple physical restrictions for the solution of a
propagating crack: (a) the flux E, of energy into the moving crack front
eage per unit length of edge must be finite and non-zero because the sur-
face energy y is finite and non-zero, and (b) the flux E, of energy into
any point on crack front, including the surface point 0, must be zero, be-
cause the trace of the surface point 0 as it moves is a line, and a line
can be associated only with a negligible amount of additional surface
energy.

The first condition requires that Eo = ﬁL ci-(aui/ax)r1d¢ where ry, ¢ is a
polar coordinate system in a plane normal to crack front edge, L is a
circle of radius r; in this plane centred around the edge, x is the dir-
ection of crack propagation, J;; 1is the cartesian stress tensogl and uy
are cartgiian displacements. Not%nglthat uj ~ r?, auj/ax o~ r? "
Wiy = P71 it follows that Eo ~ r?P~1 and For this to be finlte as r; » 0,
it"is necessary that 2 Re(p) - 1 = 0 or Re(p) = V2, as is well known.

The second condition (b) requires that E, = ﬁjg Oi~(3uj/8x)dﬂ = 0 where

0jj = cartesian stress tensor, uj = cartesian displacements, x = coordinate
in the direction of crack extension, { = surface of a sufficiently small
sphere with centre at point 0. Noting that uj ~ A, ouj/ox ~ rA-1,

0ij ~ rA-1l and d2 = r®sin 9 d0d¢, it follows that E; ~ r2A, and for this

to be zero as r +~ 0 it is necessary that

Re(A) > 0. (18)

Furthermore, consider condition (a) and assume that the value of surface
energy of crack extension, y, is constant. Then the value of the stress
intensity factor, K, must be also constant along the crack front edge,

8 = 0. Factor K is proportional to the displaceTents at a chosen fixed
distance r; from the edge 6 = 0; i.e., K~ u ~ v P r? f(6,9). Along the
cedge 6 = 0, only the value of r varies while r; and f do not. Thus, a
constancy of K along the crack front edge requires that A - p = 0

(Re(p) = 12). So, it has to be concluded that

Re(A) = 1/2 (19)

must hold for the terminal surface point of a crack that propagates.

In consequence, the most relevant problem is to determine the value of
angle 8 which the crack front edge must form with the surface in order to
yield X = y2. This should be the main objective of further investigations.
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ADDENDUM

In subsequent work, the question of the proper value of the exponent p of
distance p = sin 6 from the singularity line has been studied more care-
fully. Let (rp)P be the term of lowest exponent in the field near the
singularity line (p = § = 0). For crack edge singularity, the lowest P
corresponding to deformed states is p = 1/2. However, for rigid body
rotations in the neighborhood of the singularity line, one has p = 0. For
p = 0, the term (rp)P does not cause any singularity as p + 0 (or 6-0) at
finite fixed r. However, this may cause gradient singularity of the type
8P~ or 67! for r+0, which is more severe than the singularity 9-'2 associ-
ated with the planar near tip field of a crack. That terms of 6-! should
indeed be present is indicated by Benthem's solution [1].

Therefore, all finite element solutions were rerun with p = 0. The result-
ing values of ) were plotted versus 1000/Nm'2 for various chosen values of
m, and the convergence rate exponent m which gives the best straight-line
fit, as indicated by the sum of square deviations, was selected. This ex-
ponent varied between m = 1.7 and m = 1.9 for all v. Furthermore, plotting
log(AX - 0.5) versus logyN for v = 0 (and p = 0), the convergence rate was
obtained as m = 1.9, Obviously, the convergence should not have been quad-
ratic (m # 2) (since the gradients of F, G and H exhibit singularities at

8 = 0), but it is of interest that the exponent m is so close to 2, giving
still quite a rapid convergence. Using the plots of X versus 1000/N

for the optimum value of m, the A-values have been extrapolated for N-w,

In these plots the points fell on straight lines just about as closely as
the points in Figure 3, but the lines were more steeply inclined than those
in Figure 3. The extrapolated values for N+o values agreed within about
0.4% with Benthem's values for all v between 0 and 0.48. This confirms the
Benthem's solution as well as the present one as sufficiently accurate.

The choice p = 1/2 in previous computations (Figures 2-4) was motivated by
the fact that the term (pe)“2 is dominant at 6+0 and finite r. However,
the results just reported show the choice p = 1/2 was inappropriate. This
can be also deduced as follows. Let u~r? 6P F(6,¢) be the term of lowest P
present at r>0 for the exact solution (p = sin6~6), and assume that a
different exponent_p* # P, is considered instead of p for the numerical
solution,i.e., u~r’ 6P F*(8,4). Then, for the stress com onents, Jjj~
3u/38~1" 8P~ F(8,4) for the exact solution and oijﬂvrxep -1F(6,4) for

the numerical solution. Equating these two expressions for Ojj, one has

F*(8,4) = 0PP" F(a,9). (20)
[n previous computations (Figures 2-4), p*=1/2 while p = 0 exists, giving

F*(6,¢) = g2 F(6,9). Obviously, F*(8,¢) + « as 0-0, and so F*(8,¢) can
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in no way be adequately represented numerically. If p* = 0, then p*-p = 0
for the term which prevails at 6+0, giving F*(8,¢) = F(8,¢) which ought to
be a bounded smooth function that can be adequately represented numerically.

A less severe singular term with p = 1/2 is always present at the same time,
of course. For this term, F*(0,¢) = §12 F(6,¢); F*(0,¢) is still bounded
and acceptable for numerical representation, but because 3F*(8,4)/30 tends
to infinity as 8-+0, the accuracy of representation will be worse, causing
the convergence rate to become less than quadratic.

Therefore, a quadratic convergence cannot be achieved with the present
method of analysis.

Because the slope of F*(8,¢) in the 6 direction tends to infinity as -0,
it seems appropriate to refine the grid step A as 6 decreases. Irregular
rectangular networks in which A¢ was constant and in which A8 was refined
so as to keep A8 roughly equal (sin 8) A, have been tried, using same
numbers of divisions in both 6 and ¢ directions. Curiously, however, the
results were not any better than those for regular grids; the plots of A
versus IOOO/NmR had about the same inclination. But the extrapolated
A-values for N+ agreed again with simple check cases and with Benthem's
solution within a 0.4% error (N=121 being the finest grid used).

As an additional check, the case of a right-angle corner on the front edge
of a plane crack was solved. The solution for this case was obtained in
equation (39) of reference [4] as X = 0.296 for any v and more accurately
as X = 0.2966 in references [2] and [3]. The extrapolated value of A for
N> agreed with this within 0.2% error for v = 0 and v = 0.3, using N =
128 as the finest grid.

Presently, computations of X are in progress for cracks whose plane is
normal to the half-space surface but the front edge forms angle B # /2
with the surface. Preliminary results indicate that A decreases (below
Benthem's values for B = m/2) as B exceeds 7/2. The practically most im-
portant case A = 1/2 is obtained for about B = 101° if v = 0.3. This
solution will be reported separately.
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