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FRACTURE MIRROR FORMATION IN SINGLE CRYSTAL ALUMINA

A. I. A. Abdel-Latif, R. E. Tressler and R. C. Bradt*

INTRODUCTION

Interest in fracture mirror formation, or crack branching in brittle
materials originates from practical applications. Mirrors have been used
to locate fracture origins [1], predict flaw sizes [2-4], verify failure
stresses [5,6], estimate the magnitudes of residual stresses such as the
compressive surface stresses from tempering [6,7], to interpret impact
failures [8], etc. They have received particularly intensive study in
the fracture of glass. More recent studies have emphasized the general
applicability of this particular fracture surface analysis to all brittle
ceramic materials, particularly fully dense polycrystalline ceramics [971.

The general empirical relationship that has emerged is:

W =a=k (1)

¢ b’
where of is the fracture stress, Ty is the fracture mirror radius and A is
referred to as the mirror constant. It has the units of fracture tough-
ness MPa.muz; therefore, it is sometimes referred to as the stress inten-
sity at crack branching, Kp. However, as pointed out by McKinney [10],
the mirror boundary forms only after the stress intensity at the crack tip
substantially exceeds Kic. In fact, all reported Ky's exceed Kic for the
various brittle materials which have been tested. Numerous authors have
treated the experimentally measured Ky's as material constants, in spite
of contradictions in values [1] and the highly tenuous association with

KIC'

Recently Abdel-Latif, et al. [11] have shown that for a soda lime silica
glass the mirror constant is dependent on the macroscopic stress state of
the test specimen at fracture and have presented energy balance analyses
which yield quantitative agreement between the experimentally determined
mirror constants and calculated values. It also explains the tensile

and flexural differences in K. In this paper, the energy balance
criterion is extended to theoretically predict the mirror constants for
Al203 single crystals demonstrating anisotropy of fracture surface energy
and elastic constants.

THEORETICAL BACKGROUND

The criteria for fracture mirror boundary formation which have been pre-
sented in the literature all condense to three basic approaches: (1) a
critical velocity criterion, which argues that the propagating planar
crack branches at some characteristic or critical velocity for a given
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material [12]; (2) a critical stress, or strain intensity criterion which
indicates that the crack branches at some characteristic critical stress,
or straim intensity [13-15]; and (3) the energy balance criterion which
assumes that the crack branches when the rate of release of strain energy
exceeds the demand of the propagating planar crack such that four surfaces
can be created instead of two [16-20]. The failure of the first two to
explain the effect of the macrostress state of the specimen on the observed
mirror radii in glass has been discussed by Abdel-Latif, et al. [11]. The
cnergy balance approach outlined briefly here has previously been discussed,
but has only recently been applied in detail to explain differences in mir-
ror constants for specimens fractured in flexure and in tension.

The energy balance approach to crack branching as first suggested by Mott
[16] applies the classical Griffith treatment for the propagation of a
pre-existing flaw, but includes a kinetic energy term since the kinetic
energy of the crack surfaces is substantial at crack branching velocities.
For a semicircular, planar crack propagating from the surface in a cylin-
drical rod in uniform tension, the total energy of the system can be eval-
uated. One must establish an affected volume of the rod, or a domain of
the crack from which most of the released strain energy for the whole
system is obtained to accelerate the crack, and to be included in the
kinetic energy term. In the present work this domain has been chosen as a
volume of semicircular cross section in the plane of the crack, A = 1/2 1
a*, and extending 2a in both directions perpendicular to the crack plane
in which a is the crack radius [11]. Using this approach, the following
terms for the total energy of the cylindrical rod in tension containing a
semicircular surface crack can be evaluated:

Ut = Uo - Ue * US * Uk’ (2)
where Ut 1is the total energy, Uy is the energy of the specimen without
the crack, U, is the elastic strain energy, Ug is surface energy, and Uy
is the kinetic energy term. Substituting for the respective energy terms
at crack branching yields:

o _2a® kpV?Io .2a?
U =u = _f + |2y .a2) «+ ___fF (3)
t 6] E f E2 ’

where 0¢ and a have been defined, E is the elastic modulus, Y¢ is the
fracture surface energy, k is a proportionality constant, p is the density,
and V is the crack velocity. Note that 4Y¢ has been substituted_for 2Y¢
in the surface energy term since branching is being modelled as the form-
ation of four surfaces instead of two for the normal fracture process.
When the strain energy release rate equals the energy demands to propagate
two cracks instead of one, the mirror is bounded. Differentiating the
above relationship with respect to the crack radius, and then equating

to zero, yields the crack branching condition:

U, 3nof2a2 3Hka20f2a2
el eay-waaent K 4Hyfa + — =0, (4)
E

then, setting a = T, and V = Vy and rearranging:

3kov, 2
2 3_._"b ). :
¢ ﬂn<E - ) 4Yf' (5)

Part VII - Non-Metals

The other solution to equation (4) V =0, is not applicable to the
branching phenomenon.

In terms of the mirror constant form, the condition becomes:

4EY, 3z
g.r 2 - ——\(W/3) (6)
kev,

E

]

Thus, only for a very specific set of test conditions will the product
Ofrmuz be constant for tensile fractures. With respect to the fracture
of single crystal alumina, which has a highly anisotropic Y¢ [21], as

well as considerable anisotropy of E [22], even if branching occurs at
constant velocity (which is not correct in detail for sapphire, but nearly
so [19]), there should be a significant orientation dependence of ogr,'?.

Expressions having the same form as equation (6) can be derived for dif-
ferent stress states in a test specimen. In the case of the four point
flexural test, the stress terms in equation (3) are not simply Of, but
decrease from of at the surface of the specimen to zero at the neutral
axis. By substituting a linear relationship for of {Of(R-a/R)}, where

R is the radius of the test rod, into equation (3) and performing the same
mathematical manipulations a similar expression for ogry'® can be derived.
In Appendix A the relationship for four point flexure is given. Based on
these relationships, it is obvious that the '"mirror constant' cannot be

a constant for a given material since the sample dimensions, and the test
geometry all enter into the expression when the kinetic energy term is
included in the energy balance criterion for crack branching. Note that
for large specimens and large test spans relative to the fracture mirror
size, the geometry dependent term for the flexural case reduces to 1/3,
the tensile case.

EXPERIMENTAL RESULTS AND DISCUSSION

In the case of an isotropic material the previously described theoretical
analysis has been shown to quantitatively predict the mirror 'constants"
for the three test geometries considered [11]. The following experimental
results and calculations illustrate that the approach correctly predicts
the '"mirror constant' relationships for a highly anisotropic single crys-
tal material alumina.

Sapphire filaments*,~0.025 cm in diameter, with the C-axis parallel to
the filament axis were tested in tension and four point flexure at room
temperature in air using a constant strain rate (1.27 cm/min cross-head
speed) testing machine. The gauge length in tension was 2.54 cm and in
four point bending the outer test span was 1.90 cm and the inner 0.95 cm
inches. A very small area,~0.1 cm in length, of the gauge length was
lightly abraded with 15 pm diamond by touching the fibres with a polishing
cloth containing the diamond paste. Flame polished ruby** rods with the
C-axis ®60° from the rod axis and 0.043 cm in diameter were also tested

in four point flexure to assess the effects of the anisotropy of fracture
surface energy on the mirror constant by comparing the results to those
for C-axis sapphire. The fracture surfaces were examined and photographed
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in the scanning electron microscope. Detailed measurements of the mirrors
were taken from the micrographs.

A typical fracture mirror is illustrated in Figure 1 for a "60°" ruby fle-
xure test. Note that there is no mist region as in glass. From Wieder-
horn's [21] fracture surface morphology, it is clear that, energetically,
the morphological rhombohedral planes are the ""easy" cleavage planes.

In the case of the "60°" ruby fracture surface the original crack plane in
the sample is nearly parallel to the morphological rhombohedral plane.
Thus, one observes rather broad cleavage surfaces after the crack branches
trom the original plane. The steps on those surfaces, nearly parallel to
the filament axis, are probably other morphological rhombohedral planes

of the same zone. In the case of the C-axis filament the mirror is co-
planar with the basal plane and the branched crack produces hackle at
Steeper angles to the original crack plane and the C-axis, again they are
the characteristic morphological rhombohedral cleavage planes. The frac-
ture mirror pattern is also well defined in other published micrographs

of single crystal alumina fracture surfaces, including those of Wachtman
and Maxwell [23], Kotchick and Tressler [24], Firestone and Heuer [25],
and Haggerty [26].

lhe results are presented in the classical fracture mirror plot in Figure
2 along with literature data for three types of polycrystalline alumina
with significantly lower strengths; a hot pressed variety (A = 10.3),
AlSiMag #614 (A = 8.3), and an undesignated variety (A = 5.4). The first
two polycrystalline aluminas were fractured in flexure; the last one in
unaxial tension. Analyzing first the observed differences in the mirror
constants for the single crystal materials, qualitatively the trend is
the same as observed for tension vs. flexure in glass specimens; the
mirror constant being larger for testing in flexure than for tension.

In addition, the mirror constant for the '"60°" material in flexure is
somewhat smaller than the C-axis value in tension.

Because of the complex form of the expressions for the flexure tests one
cannot solve unequivocally for the ofrm_lz value unless a characteristic
relationship between rp and V, the velocity, is known, which is not the
case. Therefore, only the expression for the tensile case can be evalu-
ated numerically and compared to the experimental value. Insertin% num-
erical values of the parameters in equation (1), a value for Ofrp 2 can
be calculated for the C-axis tensile test. Using Yf = 40 J/m* [21],

E = 4.65 x 10** N/m® [23], k = 22 [11], p = 3.96 x 10° kg/m?, and

V = 1.50 x 10° m/sec [8] yields a mirror constant of 6.4 MPa.m”Z, con-
sidering the uncertainty in the value of V and the approximation in using
the E value parallel to the C-axis and the Yf value for a planar crack
perpendicular to the C-axis. If the analogous calculation is done for
the "60°'" crystals using Y§ for (1012) cleavage of 6.0 J/m® [21], and

E value of 3.45 x 10*! N/m® for the direction perpendicular to the "60°"

plane [22] and the same velocity, a mirror constant of 2.50 MPa.m'? results.

The calculated values illustrate the significant anistotropy that one
should find in mirror constants from tensile tests in these different
orientations of single crystal alumina.

From Figure 2 it is apparent that the "mirror constant" for C-axis sap-
phire in flexure is nearly twice that in tension. Referring to the equ-
ation in Appendix A, for small rod radii (as in this case) the mirror
constant at a given set of conditions must be larger for the flexural
case. Likewise the flexural '"mirror constant" for the "60°" crystals
must be larger than the tensile mirror constant; which it is, comparing
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the experimental value to the calculated value. It must be emphasized
that in the case of the flexural tests the apparent mirror constant that
one observes experimentally, is very much dependent on the test geometry,
and, therefore, Zs not a constant for a particular material.

For the polycrystalline materials, it is noteworthy that the published
"mirror constants' from small test bars tested in flexure are on the
order of twice the mirror constant reported for polycrystalline alumina
tested in uniaxial tension, thus substantiating the validity of the
energy balance approach and the test geometry predictions thereof.

The fact that the Ofrm”2 value for C-axis sapphire tested in tension is
similar to the polycrystalline alumina value for tensile tests is not
readily resolvable, since the fracture surface energies for polycrystalline
Al203 are generally lower than the 40.0 J/m2 used in this analysis [27] .
There is not sufficient data reported concerning the particular material
used in the tensile tests to speculate any further.
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APPENDIX A

THE '""MIRROR CONSTANT'": FOUR-POINT FLEXURAL TEST [R = Specimen Radius]
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Figure 1 SEM Fractograph of a "60°" Ruby Specimen Fractured in Four
Point Flexure Illustrating a Well-Defined Mirror with the
Associated Hackle

938

3000f 4 POINT FLEXURAL /S

25001 b

FRACTURE STRESS, o (Mn/m?)

2000t J
&
3 C-AXIS SAPPHIRE
1500 & & TENSILE b
g 2 a
< & N
& X ®°
>
& @
1000} £/ &~ RUBY, 60° B
> & 4 O 4 POINT FLEXURAL
A\ Qs
& o )
& n°
<0 o
500+ ) o -
I\ N W o
<5
0 1 1 1 1 1 1
() 50 100 150 200 250 300

Figure

2

Part VII - Non-ietals
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The '"Mirror Constant' Graph of (Fracture Stress) versus
(Mirror Radius')'”Z for Single Crystal Alumina Specimens
(this study) and Literature Data for Polycrystalline
Alumina. The Numbers in Parentheses are the '"Mirror
Constants" Calculated from the Slopes of the Lines





