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FRACTURE MECHANICS OF VISCOELASTIC SYSTEMS

V. N. Poturaev* and V. I. Dyrda*

INTRODUCTION

Consideration is being given to viscoelastic systems of inherited type.
These systems, under cyclic load, display notable dissipative warming-up
and their mechanical behaviour varies with time and depends upon environ-
mental conditions in the form of radiation flows or chemically active
agents. Local fracture theory is applied to analyze the fracture processes
of such systems. All the relations outlining this process have been ob-
tained on the basis of methods of thermodynamics of irreversible processes.
An experimental procedure is presented which makes it possible to appraise
characteristic properties and life time prior to fracture, based on the
available present level of information on the physical, chemical and mech-
anical states of the system.

A set of equations is under consideration for calculation of real visco-
elastic constructions. This set of equations included: 1) state para-
meters, 2) deformation equilibrium and coincidence equations, 3) rheological
relations, 4) heat equation with internal heat sources, 5) fracture criter-
ion equations.

Deformation equilibrium and coincidence equations are adopted with allowance
made for particular system geometrical shape and its loading conditions.
Rheological relations are selected with regard to system mechanical be-
haviour. Valter operators with a Rabotnov - type (relaxation with rational)
exponential nucleus have been used in this specific case.

FRACTURE CRITERIA
Two fracture criteria have been utilized in this research:

1. An entropy criterion postulating the following: system fracture takes
place at the moment when entropy increment density reaches a certain crit-
ical level ASg(T) i.e. material behaviour at a given temperature. After
integration this criterion appears as [1]:

te, £
S S(t)dt = AST(T) = S(tf) -S(t) , (1)
5 o
o
where S(t) = entropy density; ASf(T) = entropy density at a critical level
of material behaviour, serving as a temperature function.

Let us consider fracture in a real viscoelastic system and take as a system
a prismatic rubber element loaded in accordance with the law of harmonics
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£ = gpsinwt. We take {Tg,T,G} as a complete set of thermodynamic parameters

applicable to a 'special' one which on the one hand is sufficiently small
to be considered as a continuous medium point and on the other hand --
sufficiently large to exhibit all the properties of this medium. By apply-
ing the first law of thermodynamics U = Tg = To + q, the available energy
density definition f = U - TS, and the condition f = £(Tz, T,G) we derive
the following expression for the rate of change of entropy density:
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where U = internal energy density, G = shear modulus, q 7 heat flow, Tg =
stress tensor, TR = strain tensor (irreversible part), TE - strain tensor
(reversible part).

(2)

Substituting (2) into (1) and taking into account equalities [2]:
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we derive:
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Disregarding material ageing (é = 0), and assuming the temperature field
to be steady, this expression may be written as:

tf tf .
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A negative q indicates dissipation of heat in the system. The first in-
tegral in (7) represents strain energy density, irreversibly dispersed in
[to,tf] time; the second thermal energy density, released in the sample at
the same time. For a closed strain path:
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which results from the condition that: work done by stress in elastic
deformation equals zero in this case. With regard to (5) equation (4)
assumes the form:
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Supposing that rubber adheres to viscoelasticity linear inherited theory
and that its properites do not vary in the process of loading, we may
specify stress-strain bond as:

t 1 A}
T (t) = 3(:O[T€ (t) - x_i k(t-t") T, (¢ )dt] (7)

where k(t-t') is a nucleus of relaxation expressed as a Rabotnov rational -
exponential function, x = rheological parameter, G, = instantaneous shear
modulus. With regard to (7) expression (6) assumes a final form:
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Here y = material dissipation coefficient; ASfg occurred in the course of
experimental studies of sample endurance, the samples being in the form of
double-sided blades and was independent when investigating endurance of
full-scale rubber structures in the form of a prismatic shear element. The
heat flow q for the sample's most loaded point has been determined when
solving a heat conduction equation of thermal conduction with an internal
heat source.

For the sandwich-type rubber-metallic element with the following parameters
Go = 1,76 MPa, 29 =0,1, T=2320K, w=12Hz, ¢y = 0,31, Asf = 2,03 10%J/m?
deg, q = 5,31.10
time resulting from the experiment for the lot of 36 full-scale articles
constitutes (4 to 5).103 hours. Agreement, as seen, is quite satisfactory.

2. The range under consideration as the second’ criterion of fracture is
the process of achieving by the system a critical level of damage, when
the system converts into labile state. A criterion equation for the shear
element loaded by the law of harmonics has been obtained as follows:

_ 0,4 .
Pkp =1 - V 6T o (9)

and time-period prior to 'special' volume fracture:
P, exp (Q/KT)

t, = (10)
£f € k0 Io (YT/kT)

where Py = critical concentration of stored defects; ko constant of action;
c = mategial behaviour, depending upon initial components concentration and

forms of the elementary reactions; y = specific energy of defect formation;

[o = Bessel function.

Expressions (9) and (10) are obtained for the case where thermo-conductancy
equation is represented as:

aT <32T 2T 82T> W
—_— =23 —_—t — + — + —
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and the revolution equation of material damage has been recorded due to the

fact that damage concentration rate change is related to the intensity of
physical-chemical processes as:
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Here a = thermo-conductance coefficients; N', N!, N? - tensors of the null,
first and second valency correspondingly; c, = specific heat capacity;
p = density.

A number of problems have been solved estimating a period of time prior to
local fracture of viscoelastic systems in the form of silent-blocks and
sandwich-type shear elements under cyclic load. If material constants
have been determined correctly then (10) shows a satisfactory agreement
with practice.
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J/m® sec estimated with regard to (8) time tf = 4800 hours,
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Material damage in the process of continuous loading may also be disclosed
in the course of direct physical experiments. In the general case for
rubber, concentration of damage obeys the relation:

Ap(t) = Pkp [1-exp(-nt)], (11)

where APy = damage storage from the moment of system loading till its
failure; R = constant. For CKH - 3 based rubber pkp = 5,3 (in terms of per
unit value) and n = 0,0016. This concept has been confirmed in independent
experimental studies wherein material damage (concentration of rupture with
time up to system failure) has been determined on models by infrared spec-
troscopy.

We may derive pre-fracture time from (11) if Ap(t) is known over the wide
range of stress and temperature variations. Promising results have been
obtained for thin films, as well as good agreement between theory and ex-
periment.
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