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FRACTURE MECHANICS OF TIDAL FLEXURE CRACKS IN FLOATING ICE SHELVES

R. A. Smith*

INTRODUCTION

Estimates of the mechanical properties of floating ice shelves are required
to facilitate the design of projects such as aircraft runways and scientific
bases. Icebergs which calve from the margins of such ice shelves pose a
threat to shipping in polar waters, while at a more esoteric level, recent
well argued theories [1] suggest that the disintegration of the Antarctic
ice sheet may initiate a global ice age. The detailed mechanics of the
break up of floating ice are therefore of more than academic interest.

This paper discusses one possible way in which failure may begin - that of
flexure of the ice sheet by the rise and fall of the tide. A model is used
to estimate the magnitude of the bending forces involved, then by applying
the concepts of fracture mechanics to an unusual situation, the depths of
flexure initiated cracks are calculated.

TIDAL BENDING STRESSES

Tidal bending (or 'strand') cracks at the land junction of a floating ice
shelf have been described in some detail by Robin and Swithinbank [2].

The following analysis to estimate the bending stresses due to the rise and
fall of the tide, is due to Robin [2] but has been developed independently
by Holdsworth [3]. The floating ice is modelled as a long elastic canti-
lever strip, which in equilibrium floats at the mean level of the water.
Axes are located at the neutral axis of a strip H thick, at the land based
end, approximated by a clamped boundary, corresponding to the observed
rapid increase in ice thickness (see Figure 1). The y axis is positive
downwards, the x axis along the length of the beam. Now if the tide rises
by an amount w, the restoring force per unit length on a strip of unit
width is given by

F=o 28 W+y)

where g is the acceleration due to gravity, p, is the density of sea water
and y is the deflection of the beam. This restoring force is the second
derivative of the bending moment, hence, the general plane strain equation
for the beam bending problem:

d’y _  (1-v») M(x)

dx? EI

becomes
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yhere.v is Poisson's ratio, E is Young's Modulus and I is the moment of
inertia of the beam per unit thickness, H%/12. Following the solution of
beams on elastic foundations due to Hetényi [4], the general solution is

A =
y = -w+e x (A cosAx+B sinAx) + e . (C cosAx+D sinAx)

where
2
P, & (1-v9)

b =
A 4EI

The boundary conditions are that at the free end, the beam rises and falls
with the tide, i.e.,

as x * ®, y = -y A=B=0

while at the clamped end both the deflection and the slope are zero

==y =0 at x=0.
Therefore the deflection may be written,
-AX .
y = -w [l-e (cosAx+sinAx)] (1)

from which maximum values of the modulus of the deflection occur at dis-
tances separated by m/)A and between these points the deflection curve
follows a flat wave of decreasing amplitude with x.

Equation (1) can now be differentiated to yield the bending moments and,
hence, the stresses at any section of the beam. Maximum values of moment
and stress are found to occur at x = 0, m/2\, 3m/2X\ etc., where the dimen-
sion 1/A controls the scale effect of the problem. By substituting typical
values, p, = 1.02 x 10°kg/m?, g = 9.81m/m?, v = 0.3, E = 2.7 x 10°N/m?,

1/} is found to be in the order to 940m. The maximum bending stresses are
going to occur first at the hinge, then some 1.5km out, ratios of succes-
sive maxima being given by e "X, making the third and higher peaks
negligible.

In general, therefore, once the bending moments are known for any tidal
range tw, and any ice depth, H, the stresses can be computed by assuming
the linear distribution about the neutral axis associated with elastic
beam theory. The maximum stress will occur at the top and bottom surfaces
of the ice, alternating between tension and compression as the tide rises
and falls. Using values typical of the Ross Ice Shelf in Antarctica*,

at the hinge a value for the moment of 2.2 x 10°Nm is obtained, leading to
maximum surface stresses of 3.3 x 10°N/m?. Robin [2] concluded that this
analysis coincided reasonably well with the observed facts.

*H = 200m, w =+ 0.5m .
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Part VI - Applications

DEPTH OF STRAND CRACKS

The stresses in the region of the hinge can now be examined in greater

detail to estimate the depth of cracking. The method employed has previously
been used to calculate crevasse depths in glaciers [5]. Briefly, the hinge
region is subjected to two stress systems, see Figure 2, the bend moment

here shown inducing tensile stresses at the upper surface and a compressive
ice overburden stress, increasing linearly with depth. Each type of loading
produces a stress intensity factor at the tip of a crack of depth, a. The
depth of the crack will increase until the difference between the stress
intensity factors has been reduced to the fracture toughness of the material.
Since ice is a brittle material, weak in tension, the fracture toughness

can be taken to be zero. This is a reasonable approximation since, by
equating the failure stress for ice from both the Griffith and fracture
mechanics failure criteria we obtain,

12
o 2BY Kio
o A6

-V2 =
(1-v2)al S
where yg v 0.11J/m? is the surface energy, hence, Kic v 26kPa*mY?, smaller
than typical values for steels by some three orders of magnitude, and may
be neglected compared with the values of applied stress intensity factor
used in the problem.

The positive stress intensity factor generated by the bending moment, M,
is [6]

. 6Myma
B H2

K=F (2)

whilst for the compressive overburden pressure [7]
K= -F.0.683 p; g avma (3)

where F is an additional correction factor due to the finite width ratio,
(a/H). Equations (2) and (3) are plotted as a function of crack depth in
Figure 3, using the hinge moment value, M = 2.2 x 10°Nm. The critical
depth is attained at a/H = 0.55, that is, crack depth a ~ 5lm. The dotted

line shows the values calculated for the second maximum moment (0.46 x lOgN/m)

some 1.5km out from the hinge. The compressive stresses are unchanged:
the critical crack depth reduced to very small value of some 7m.

A check can be made on this result. The strain relief afforded by the
cracking is in the order of the difference in the strain at the top surface
and the crack depth in the bent, but uncracked, beam. The radius of curva-
ture at the hinge (v EI/M) is of the order 0.82 x 10°m, so the strain
relief becomes

AE [ﬂR—_a} N6 x 1074,

Swithinbank [2] quotes examples of strand cracks 20 mm wide, spaced at
40m intervals. The corresponding strain relief would be v 5 x 107*, in
satisfying agreement with the above calculation.
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DISCUSSION

In common with many geophysical problems, the mechanics of strand cracking
are very complex. This paper has used a simplified model of both the
geometry of the ice, the ice/land boundary conditions and the material
behaviour. Future work will examine these details and include the stresses
due to the forward spreading of the ice. The situation at the bottom of
the ice also requires further investigation. Here, although the compres-
sive stresses are larger than near the top surface, water can enter the
crack and act as a tensile wedge. Sophisticated modern techniques have
identified bottom crevasses of tidal origin [8], while Hughes [1] has
estimated the rate at which water will freeze on the sides of these cracks.
The important point is that both top and bottom strand cracks will act as
zones of weakness when they have eventually reached the position of the ice
front and contribute to the break up of the ice shelf. The methods of
fracture mechanics have enabled a realistic estimate to be made of the

depth of cracks subjected to complex loading conditions in a naturally
occurring system.
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Figure 1 Restoring Force Acting on Ice Beam
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Figure 2 Details of Stresses Acting at Hinge
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Figure 3 Stress Intensity Factors Due to Moments and Ice Compression






