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FRACTURE CRITERION FOR SOLID PROPELLANTS

B. Schaeffer*

INTRODUCTION

Fracture of solid composite propellants is function of both time and state
of stress. A method enabling the computation of fracture time for any
type of loading, static or dynamic, uniaxial or multiaxial has been dev-
eloped. Using judicious approximations, very simple formulas may be
obtained.

TIME DEPENDENT FRACTURE

Crack Propagation Law

Recent studies [1] on solid propellants have shown that crack propagation
rate a under a static load may depend on the applied stress intensity
factor K only, using linear elasticity for the calculation of K. Results
obtained by Francis and Jacobs [1] fit nicely with a linear plot in log-

arithmic coordinates. Such a dependence was found in glass by Charles [2].

Later, Evans [3] expressed this law in terms of stress intensity factor.
Using time-temperature equivalence we may write

aa,=cxf (1)
where C and p are materials constants and ap is the time-temperature shift
factor:

Ci(T - T))

G+ T =T (2)
(o}

log ap = -

Values obtained from stress relaxation measurements, for T, = 20°C are
Cy = 9 and C, = 209°C[4].

Three types of tests (Table 1) on a polybutadiene propellant gave results
shown on Figure 1. The crack-propagation law is:

Y a = 102 K®
@ ap 10° K
The numerical value p = 6 was also found on polyurethane propellants.

This was also found by Swanson [S] using results of reference [1].

Smith's Failure Envelope

The crack-propagation law is a differential equation that ca. be inte-
grated provided the initial crack length a, and the applied stress a(t)
are given as was done by Evans [3].
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We assume that ap is small compared to Specimen size, e.g. 2ag is the

- ~ ' ¥ s = . .
Slze of the largest filler particle. This allows to consider the medium
as infinite where

K = o(t)vra(n) (4)
and a varies from 4o to infinity,

For constant stress-rate J, the differential equation is

%% = C(otvma)? (5)
or
=) tf
f T;z/*z = C(dﬁ)*’f P at (6)
[6)
o

where te is the time at break.
The stress at break is

0. = 0t

f f (7)

After integration, time at break is obtained
a

t. =P +1 T
£ p/2 -1 c a};/Z -1 Ofp P72

Assuming a linear viscoelastic behaviour and using the Schapery formula
[6] for the Telaxation modulus:

E
E(t/aT) =B * ___ﬁ__._ji_jT (9)
()
o T

where'Ee, Eg, To and n are material constants, gives, for constant strain-
rate €:

i l-n
Of o TO aT(E - Ee) tf
BBy ¢ (I -n)t L+e=s -1 (1
£ £ o T

Experiments show that results obtained at constant € or 0 do not differ
appreciably and we use equation (8) in (10). It gives an equation for
the Smith failure envelope [6]. Agreement between theoretical and experi-
mental envelopes is very reasonable. Theoretical fracture strains are 10

to 30% too high, probably because of the non-linear behaviour of the
material.
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MULTIAXIAL FRACTURE ENVELOPE

Generalization of the crack-propagation law in terms of the strain-energy
release rate G opens the way to three-dimensional loading:

'
aa, =c P/ (11)
T
C' and p' are new material constants, p and p' are only slightly different,
[S] owing to the time dependence of the modulus. Equation (11) is the Lake

and Lindley formula [7] similar to other criterions (8, 9].

For the sake of simplicity, let us now consider only instantaneous frac-
ture. G is then the only parameter. For a given geometry, G is propor-
tional to the variation AW during fracture of the strain energy density W,
When W is zero after fracture this is identical to Beltrami's criterion.
If the material is incompressible and undilatable it is von Mises crit-
erion.

We now understand why Beltrami's criterion did not work under high pres-
sures: this is because the strain energy due to pressure is not available
for fracture if the material cannot implode. Von Mises does not work too
for a dilatant material where an increase of volume occurs during straining.

The strain energy density at fracture is given by the classical formula:

2 2
o} T
oct 3 “oct
A T T (12)
where Oct = /3 (01 + 0; + 03) (13)
and Toct = 1/3 ‘/(01 - 02)% + (0, - 03)* + (0, - 0y)? (14)

U1, 02 and 03 are the principal stresses.

We shall assume a constant shear modulus u and that the above formula may
still be used with a variable bulk modulus K.

In order to plot on the same graph results obtained at different strain-
rates or for different materials, reduced coordinates will be used:

X =0 / o and y =0 / o

cht and Tgct are O,.¢ and Toct at fracture in uniaxial tension. They
are related by

P e T
foct = & Yoct i5)

A reduced strain energy density may be defined
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o duW W L2 2
PRI TS (16)
STt

For y/K = 0, it expresses von Mises criterion:
w=1 (17)

Because of the granular nature of the material, shearing strains produce
dewetting, porosity and volume increase, even under hydrostatic pressure
[10]. The bulk modulus is then a function of Ogect and Toct and may be
positive or negative.

Following Reiner [11}, the volume change is

R 2 (18)
> + €3 =0 Ko+ 8

Bi +62 3 oct/ Toct/

£,, £, and €3 are the principal strains, « is the bulk modulus of the un-
strained material and § is the dilatancy modulus. The porosity decreases
when the pressure increases: § is a function of Jpct-

9 T
§ = uB(o - x)ztOct (19)

o and 8 are numerical constants. The compressibility is

€ + €2 *+ €3 2
b—7 (20)

oct uBx(a - x)2

N

=

a

For solid propellants, 1/k ~ 0, the reduced strain energy density is:

we —2L— e y? (21)
3B(a - x)*

After fracture, y = 0, then w = 0 and ordinary Beltrami criterion may be
used:

w = Constant = — ) (22)
38 - 1)2
The constant has been obtained by reference to uniaxial tension (x =1,
y = 1).

he equation of the multiaxial fracture envelope is:

y = X (23

38(a - x)*
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For @ = 8 and B = .017 we obtain the curve shown on Figure 2 that fits the
experimental points very well except for compressive loading. The compres-
sive strength is indeed dependent on the specimen shape.

CONCLUSION

A general criterion taking into account the whole stress tensor as well

as the rheological properties of the material may be given for solid
propellants: the crack propagation rate depends only on the strain energy
release rate. The integration of the differential equation is a powerful
method to describe the time dependency of fracture of solid propellants.
Fixing the time, it has been shown that Beltrami's criterion is a parti-
cular case of the strain energy release rate criterion. It may be re-
habilitated if variable elastic 'constants' are used and if the elastic
energy remaining in the material after fracture is subtracted from the
elastic energy before fracture.

The physical reason for the increase of the strength under pressure is the
work that has to be done against the pressure to increase the volume of
the material. It will be measured with a Farris dilatometer [10] and
related to the strength.

It should be emphasized that the phenomenon of dilatancy is common in
many granular materials, for example crystals, where the volume increase
is directly proportional to the dislocation density [12]. Atoms may be
compared with the filler particles and dislocations with the vacuoles due
to dewetting.
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Specimen type

Loading rate

Temperatures

Thickness
Width
Gage length

Initial crack
length

Single edge
notched

8.3 10 °m/s

-40, -20,
+20, +60°C

S mm
10 mm
50 mm

2 mm
(= a)

Sheets,
central notch

8.3 10%mys

-20, +20°C
+40°C

5 mm
230 mm
40 mm

40 mm
(= Zao)

Figure 1

LOG(caﬂ

(+) Single Edge-Notched and
Crosshead Speed and Various

(*) Sheet Specimens at 5
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(m /s)

Stress—Intensity Factor versus Reduced Rate of C

(x) Sheet Specimens at Constant

Temperatures

Sheets,
central notch

F = Constant
20°C

6 mm
230 mm
40 mm

40 mm
(=ZaO)

onstant Load and 20° ¢

rack Propagation

-
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Figure 2 Multiaxial Fracture Criterion. Reduced Octahedral Shearing
Stress versus Reduced Octahedral Normal Stress. Coordinates
of Uniaxial Tension are x = Y = 1. Most Results are Expressed
in True Stresses. Atmospheric Pressure has been Neglected.

(*) Tension Under Various Pressures, all on the Same Polyurethane
Propellant. Similar Results have been Obtained on Polybutadiene
Propellants.

(+) Axial and Diametral Compression of Cylinders of Various

Shape Ratios.

(M) Tension of Hollow Cylinders with Varying Internal Pressure
(0) Torsion of Hollow Cylinder

(x) Equal Biaxial Tension (Membrane)
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