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FINITE ELEMENT ANALYSIS OF CRACK PROPAGATION UNDER COMPRESSION

H. Miyamoto*, S. Fukuda** and K. Kageyama*

INTRODUCTION

The behaviour of brittle materials under compression has been studied by,
e.g., Hoek and Bieniawski [1] and Brace and Bombolakis [2]. Their experi-
mental results can be summarized as follows:

1) Under compression, cracks propagate stably and further propagation
of crack requires an increase of the applied stress.

2) Branching cracks emanate from the initial crack, deviate from the
initial direction and gradually become aligned with the axis of the major
compressive load.

As the stress at final catastrophic fracture is much greater than that at
fracture initiation, as stated in (1), analysis of the propagation stage
is quite important for the prediction of fracture under compression.
Therefore, the authors paid their chief attention to the successive analy-
sis of the change of stress states with crack propagation. Since the
shape of cracks and stress states are quite complicated in the case of
crack propagation under compression, they can be analysed only by finite
element methods, and these must be more accurate finite elements than are
conventionally used. Therefore, a 10 node, 20 degrees of freedom, triangu-
lar element, which makes it possible to adopt coarser meshes without the
loss of high accuracy, was used in this analysis. A new finite element
programme was developed, which can calculate the elastic contact stresses
of crack surfaces at closure, in view of the fact that cracks might close
under compression. The calculated results were closely comparable with
the experimental results, and it was made clear that the fracture strength
of brittle materials under compression cannot be evaluated without due
consideration of the process of stable crack propagation.

THE 10 NODE 20 DEGREES OF FREEDOM TRIANGULAR FINITE ELEMENT

A triangular element of which the shape function is a complete cubic
polynomial was used. This element possesses 10 nodes which correspond

to the undetermined coefficients of the polynomial. The advantage of the
use of a higher order shape function is that coarser mesh divisioning is
possible without loss of high accuracy. Another advantage is that the
value of stress and strain can be given by the node value.
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CONTACT PROBLEM OF CRACK SURFACES AT CLOSURE

Miyamoto anq Shiratori [3] calculated contact stresses of crack surfaces
at closure in o?der to study the opening and closure behaviour of fatigue
cracks, but their analysis was limited to the case where the boundary

Our newly developed finite element programme can deal with the contact
problem on the closed crack surfaces where the state of contact cannot be
assumeg geometrically. In this finite element analysis, the boundary
conditions of stress and displacement on the crack surfaces are replaced
by those of the nodal force and nodal displacement on the crack surfaces.
Let the node on the upper crack surface be i and the node on the lower
surface be j, then the boundary conditions of closed crack surfaces are:

in + fYj =90 (1)

Yi - Yj + in - de =0 (2)

yhgre fyi, in are respectively the force on and the displacement of node
1 1n the Y direction. When there is no friction between the crack sur-
faces, the nodal forces in the X direction are equal to zero:

i = fy=0. (3)

The effect of friction is ignored in the following analysis for simplicity.
As the area of contact of crack surfaces is generally not self-evident,
the contact of crack surfaces is determined by the following conditons.

(1) Tf node i and node j contact each other, then fy. > 0.
i

(2) If node i and node j do not contact, Y.+ d_. > y. + s

i Yi j Yj
?he correct solution satisfying the boundary condition of crack surfaces
1s obtained by repeating the same procedure, correcting successively the
error of the boundary condition. This procedure is automatically carried
out by the computer.

FRACTURE CRITERIA

As the stress state near the tip of a propagating crack is in the mixed
mgde I - 11 condition, the strain energy density criterion proposed by

Slh [4] and the maximum stress criterion proposed by Erdogan and Sih [5],
which are applicable to mixed mode fracture, were adopted in this analysis,
The strain energy density criterion is based on the local density of the
energy field in the crack tip region. For two-dimensional problems the
strain energy density factor S is given by the quadratic form:

492

Part V - Analysis and Mechanics

S = allK; + 2a12K Ko+ azzxil s (4)

where Ky and Ky are the stress intensity factors of mode I and mode 11,
respectively, and a;jj are the coefficients which are functions of Young's
modulus, Poisson's r;tio and the polar angle 8. The fracture criterion
can be expressed mathematically for two dimensional problems in the
following simple forms:

aS/36 = 0, 3%S/382 >0, 6 =9 (5)
Snin = S(68)) =S (6)

where 60 is the fracture angle.

The maximum stress criterion postulates that the crack will open up in the
plane normal to the direction of maximum stress and that crack propagation
will occur when the maximum V2mrog value reaches Kic. These conditions
can be expressed as

K151n6 + KII (3cos$0 -1) =0 (7

N @ o
o

1 ; -
3 cos [kl(l + coseo) - 3KIIs1n80] = KIC § (8)

SIMULATION PROCEDURE

The procedure for simulating crack propagation under compression was as
follows. At each stage of propagation, the direction of the crack and the
applied stress were determined by the above fracture criteria, using the
stress intensity factor values calculated by the finite element method.
The increments of crack growth were taken to be about 1/10 of the initial
crack length, considering the experimental results [1], [2]. The width

of the propagating crack was assumed to be infinitesimally small. The
initial crack analyzed was of an elliptical form, but the crack growth
increment Aa was about one hundred times greater than the radius p of the
crack tip. Thus, it was considered that there was no effect of the finite-
ness of radius p on the direction and the stress of fracture initiation.
Analysis was made in plane strain and the stress intensity factors were
calculated by the displacement method. The simulation was carried out
until complete failure of the whole specimen.

TEST SPECIMEN ANALYZED
The geometry and the mechanical properties of the test specimen analyzed
were chosen so as to be the same as those of the glass specimen used by

Hoek and Bieniawski [1] (see Figure 1). The mechanical properties of the
glass specimen are given in Table 1.
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SIMULATION RESULTS

1. Crack Path

The branching paths obtained are shown in Figure 2. The path shown in the
upper right is obtained assuming the strain energy density criterion and

the path shown in the lower left is obtained assuming the maximum stress
criterion. If Aa is taken to be a/10, cracks propagate without increase

of the applied stress after D1 and D2. In order to find the critical point
Aa is taken to be a/20 after D1 and D2, then cracks propagate stably to F1
and E2. As the branching cracks become aligned with the axis of the com-
pressive load, the cracks propagate in a zigzag manner. On the whole the
crack path thus predicted agrees quite well with the experimentally obtained
crack path. Meshes near the branching crack are shown in Figures 6 and 7.

2. Change of Stress Intensity Factors with Crack Propagation

The values of K; and Kyp at the tip of initial crack, calculated by the
finite element method are:

KI//ﬁc = 0.228 KH//TEG = 0.397 .

Although the finite element values are respectively, 8.8% and 8.3% smaller
than the theoretical values of Ky and Kyp, the accuracy of the prediction
of the crack path is expected to be high because the error in K11/Ky, which
determines the direction of the crack path, is only 0.53%. The initial
crack closes when the applied stress, P., reaches 6400 MP;. This is about
200 times greater than the crack initiation stress, and the crack does not
close at crack initiation. The relationship between the branching crack
length and normalized stress intensity factors is shown in Figure 3. It
should be noted that, even under compression, Ky is positive, and the
extending crack does not close during the stable process of propagation.
No appreciable difference between the strain energy density criterion and
the maximum stress criterion is observed.

3. Change of the Compressive Stress Pcy with Crack Propagation

The change in the compressive stress Per required for further crack extension
with crack propagation is shown in Figure 4, together with the experimental
data of Hoek and Bieniawski [1]. In the case of brittle materials, cracks,
once initiated, will immediately lead to catastrophic failure if the applied
stress is tensile. Therefore, the criterion for initiation can be regarded
as the fracture criterion for total failure under tensile loading. Under
compression cracks propagate stably and the "fracture hardening' phenomenon,
which means that the applied stress must be increased in proportion to further
propagate cracks, is observed; in the case of the strain energy density
criterion, cracks do not propagate catastrophically until the L/2a value
reaches 0.4. Therefore, quantitatively good agreement between experiment

and simulation is found in the relation of P.y to normalized crack length.
Moreover, there is no appreciable difference between the maximum stress cri-
terion and the strain energy density criterion. A great difference is
observed, however, between simulation and experiment in terms of the fracture
stress, but if we note the ratio of fracture stress/crack initiation stress,
good agreement is found between simulation and experiment.

Part V - Analysis and Mechanics

DISCUSSION

In this paper, the effect of friction was ignored for simplicity. This
assumption can be regarded as appropriate, at least for this simulation,
since the cracks did not close during the stable process of propagation.
When the roughness of the crack surfaces becomes greater than the opening
width of the crack, the crack surfaces are expected to contact. As the
frictional force decreases the Ki1 value, the fracture stress will be
increased if friction exists, and it is thought that this is one reason
why the agreement between predicted and observed ultimate failure loads is
so far off.

Several fracture criteria have been proposed for mixed mode problems, but
they are originally derived for crack initiation and mot for crack propa-
gation. As cracks propagate stably under compression, a fracture criterion
for crack propagation is required for analysis. In this paper, the strain
energy density criterion and the maximum stress criterion are extended to
crack propagation. From a continuum mechanics point of view, the ideal
crack path can be mathematically expressed as a smooth differentiable curve.
Because, when a finite change of angle occurs with an infinitesimal incre-
ment of crack growth, it is probable that the crack path depends on the
crack growth increment Aa. Therefore, the fracture criterion for crack
propagation should be compatible with the differentiability of the crack
path curve. Many experimental results [4], [5] show that cracks change
their direction in a zigzag manner if Ky is not zero. It follows from
this that the fracture criterion for crack propagation must satisfy

the condition that the Ki1 value be zero. Otherwise the differentiability
of the crack path curve is not satisfied. Kitagawa and Yuuki [8] also
suggested a 'Ky = 0" criterion.

Nuismer [9] derived the following stress intensity factors for deflecting
cracks when the crack growth increment converges to zero.

E’ =£C059

5 = 5 E—I}I(l+cose)—3K1151nﬂ (9)

e it 0 ‘ .
= = Y - 1
KII > Ccos 2 KIsmB KII (3COSe ].) ( O)

where K1 and Ky are the stress intensity factors at point 0, and K1 anq
KII are those at point 0 respectively. Figure 5 shows the comparison of
Nuismer's results and Kitagawa and Yuuki's results. Here, B = arc tan
(KI/KII), and 6 is taken positive in the clockwise direction. Gogd agree-
ment between the two results can be observed. If Nuismer's solution is
correct, then the "Kiy = 0" criterion is no other than the maximum stress
criterion. But Kitagawa and Yuuki's results show that the effect of the
crack growth increment being finite is not negligible, and that, in the
case of a finite crack growth increment the "Kyy = 0" criterion and the
maximum stress criterion agree only approximately. Oscillating solutions
of Ki1, as seen in Figure 3, can be explained by this Kip decreasing effect,
and the zigzag crack path in Figure 2 could be made smooth if we let the
crack growth increment converge to zero.
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CONCLUSIONS

(1) Fracture behaviour in compression can be well explained by a finite
element simulation in which special attention is paid to crack propagation.

(2) Even under compression, Ky was positive, and cracks propagated in the
opening mode in this simulation after the first crack growth increment.

(3) It was made clear that the fracture criterion for crack propagation

must contain a "Kip = o condition, from the continuum mechanics point of
view.
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Table 1 The Mechanical Properties of the Glass Specimens

Scr (MPa-m)—[

73550 0.25 1.47 2. 91 I

E (MPa) v Ke (MPa-m'2)
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Figure 4 Change of the Compressive Stress with Crack Propagation
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