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FINITE ELEMENT ANALYSIS OF CRACK PROBLEMS IN
HIGHLY ELASTIC MATERIALS

Neng-Ming Wang* and Hilario L. Oh*

1. INTRODUCTION

It is well recognized [1,2] that the Rivlin-Thomas criterion [3] for the
tearing of rubber vulcanizates can be stated in terms of the J integral [4]:
A cut (or crack) in a rubber vulcanizate sheet will spread if J reaches a
critical value of an energy characteristic of the material. Thus, using

the above criterion and a plane stress finite element procedure, the crit-
ical load that causes a crack to gTowW in uniaxial stretching of nicked
rubber vulcanizate sheets was calculated in [2] and found to agree closely
with existing experimental data. In [5], the tearing energy of two rubber
test pieces was computed by using the J integral in conjunction with finite
element calculations. The calculated results were again shown to agree with
experimental data. It was from the recognition of the equivalence of J with
the tearing energy that an experimental technique for measuring the tearing
energy of rubber was developed in [6].

The purpose of this paper is to extend the computational procedure used in
[2] to calculate J for two other ""plane" crack problems. These are the
plane strain stretching of a thick strip with an edge cut by a stress o
(Figure la) and the generalized out-of-plane shear of the same geometry

by a shear stress T (Figure 1b). By generalized out-of-plane shear, we
mean that while the dominating displacement component may be in the out-of-
plane direction, the components in the plane need not be vanishingly small.
This is therefore in variance with the so-called anti-plane shear for which
the displacement components in the plane are identically zero.

The organization of the paper is as follows: In Section 2, we list the
basic equations for a class of two-dimensional finite deformations which
contain the plane strain and anti-plane shear as special cases. The
materials are assumed to be highly elastic and incompressible. Based on

a virtual velocity equation, a finite element procedure is developed.
Since formulations of finite element procedures for nonlinear elastic
materials have been well documented in the literature [7], only a brief
discussion of the present procedure is given. In Section 3, an expression
for the J integral pertinent to the problems considered in this paper is
derived, while its path independent property is illustrated by direct eval-
uation. It should be noted that this result is essentially contained in
[1,8,9]. 1In Section 4, we report numerical results obtained for the two
crack problems for Mooney materials. The values of J have been computed
and plotted in several figures which depict the relationship between J and
the applied load (9, or T,). For the plane strain stretching problem, a
comparison is made of the computed J values with those of the correspond-
ing plane stress case. It is found that the J values in the plane strain
case normalized by the strain energy density corresponding of Oy (without
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a crack) are almost the same as those in the plane stress case. For tge
generalized out-of-plane shear problem, the J values are compared to the
corresponding anti-plane shear solutions.

2. BASIC EQUATIONS FOR COMBINED EXTENSION AND SHEAR DEFORMATIONS
i i i i S e is 1,2,3) a body whose

Consider in a cartesian coordinate system (x , 1=1,2,3) :

cross section at any x’ occupies a plane domain D wh1ch_1s the_same or

all x°? (Figure 2). The class of deformation to be considered is such that

the displacement components uj (i = 1,2,3) satisfy

_ 1 .2 (2.1)

u; = ui(x $X%)

We call (2.1) the combined extension and shear deformations which contﬁlg

obviously the plane strain (us = 0) and the aptl—plane shear (u; = u, = 0)

as special cases. For deformations characterized by g2.1) the defor@ed

metric tensors Gij and the strain tensors €jj are defined as follows:

B (2.2)

%15 7 %45 * 250
and

1 " (2.3)

EaB B f.(ua,B * uB,a) * 2 u,a k,8 "’
1

-1 =0 ,

a3 T2 Y3,6 * E33

where §;; denotes the Kronecker delta and a comma preceding an index de- "
notes partial differentiation. Here we have used the convention that Grge
indices range from 1 to 2 and Roman indices, from 1 to 3. The contravariant
metric tensors G!'J are defined by the usual relations:
;13 = sk (2.4)
G ij % -

Let Sij be the Kirchhoff stress tensors on_convected coordinates initia}ly
coincide with the cartesian coordinates (xl) and F! be the sgrfgce loadings.
Then, the well known virtual velocity equation (e.g., [10]) in its time-
derivative form may be written as
S1) se s |L ok & ] av = sits o, as 2.5)

S 6Eij dv + /s’8 [2 uy s i
where the dot over a symbol denotes the rate of change versus ''time'", or 4
increment. The volume and surface integrals are_referred.to the undeforme
configuration. (For simplicity body forces were omitted in (2:5)?. Wef
assume that the material is incompressible and, hegce, the variations o
the displacements in (2.5) must be required to satisfy

¢tet =0 . (2.6)

ij

Expressions (2.5) and (2.6) are valid for arbitrary domains: For the con-
figuration shown in Figure 2 and for deformations characterized by (2.1),
these expressions can be written as

Part V - Analysis and Mechanics

. . . . 1 sk o ..
I [s“gs €+ 28%s ¢ JdA + 7 suﬁa[—u u ]dA = [ F's.ds (2.7)
D 1<) a3 D 2 ,a k,B D i
g™ 5 éaB + 26%5 €3 =0 (2.8)

where 0D is the boundary of the plane domain D.

Finally, we assume that the material of the body is elastic and that there
exists a strain energy function W such that the Kirchhoff stresses StJ

satisfy

ij _ 1 oW oW ij

ST =3 ,:ae.. Y Ge. | TPET (2.9)
13 ji

where p is a scalar quantity representing the hydrostatic pressure. The

stress increments S1J can be derived from (2.9) by simply differentiating
with respect to '"time" to give

ij 1 9 W W - . ij
sH = 2 + €, +pG (2.10)
2 3¢, [aeij oe;; | ke

ik GJQ :

-2paG kg °

A finite element procedure

Based on the virtual velocity equation (2.7), the incompressibility con-
dition (2.8) and the stress-strain relations (2.9) and (2.10), a finite
element procedure has been developed. The details of the procedure appear-
ed elsewhere [11]. Since the general formulations of finite element pro-
cedures for large strain and large displacement are well established (e.g.,
[7,12]), only a brief outline of the present procedure will be given in
Appendix A. In the present procedure, the elements are quadrilaterals in
the plane domain D. The incompressibility condition (2.8) is satisfied
only in an approximate way, namely the sum of the integrand in (2.8) over
all integration points is zero. This approximation appears to have allev-
iated the difficulties encountered when triangular elements were used [13,
14]. Accordingly, elemental hydrostatic pressure and stresses are likewise
represented by their average values. By doing so, the quadrilateral element
is essentially a constant stress element.

The incremental element-stiffness matrix equations assume the following
form:

kK ¢t u £

e ~ ~
- , (2.11)

c o0 P 0

where the matrices Ke, C and the vectors é',E and £ are defined in Appendix
A. We note that the elemental stiffness matrix equations (2.11) are de-
rived for the combined extension and shear deformations (2.1) for which

uj #0, (i =1,2,3). For plane strain deformations (uz3 = 0) and for anti-
plane shear deformations (u1 = uz = 0), the dimensions of the matrix equa-
tions (2.11) will accordingly be reduced. In fact, for anti-plane shear
deformations, the incompressibility condition (2.8) satisfies automatically
so that the matrix C vanishes identically.
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For specific problems, the elemental stiffness matrix as given by (2.11)

is assembled to form a master stiffness matrix. The area integrals in (A.11)
and (A.12) may be computed by using any appropriate numerical quadrature.

In the present work we have used a four-point Gaussian quadrature with the
four integration points located at s = + 0.57735 and t = + 0.57735 in the
para-metric s-t domain. The master stiffness matrix equations are then
solved by a standard Gaussian elimination technique. For a prescribed.

load increment, the solution of the equations gives the corresponding in- )
cremental displacements and elemental pressure. The master stiffness matrix
has the same form as in (2.11), which is apparently not banded. In order

to reduce computing time, a reordering of the components of the vectors u
and p has been made so that the resulting master stiffness matrix is banded.

3. THE PATH- INDEPENDENT J INTEGRAL

We now proceed to derive an appropriate expression for the J integral for
the combined extension and shear deformations as described in (2.1). We
assume that the elastic body has a crack, the crack face being perpendicular
to the x* direction (see Figure 3). The J integral was defined originally
in [4] by
du
J = I[dez - T e = ds] , (3.1)
r ~oaxt

where W denotes the strain energy density, T and u denote traction and dis-
placement vectors, respectively. The integral assumes the same value fo?
any path I' which surrounds the tip of the crack. For deformations described
by (2.1), the J integral may be written in the following form:

du,

J = f[de2 —L 4 s], (3.2)
r ax!

where vy denotes the exterior normal of the contour I' defined in the unde-

formed geometry. The path-independent property of (3.2) is shown in Appen-
dix B.

ok .j j
- S (6k + u,k) Vg

4. TWO CRACK PROBLEMS

In this section, we report the numerical results for the two crack p?oblems
shown in Figure 1. We assume that the materials are of the Monney kind and
the strain energy function can be expressed by

W=20Ci [(I, - 3) +a(I, - 3) (4.1)

where C;, o are material constants and I;, I, are strain invariants de-
fined by

It = Gi1 + Gap + Gy ,
I = G!'! 4+ 22 4 33 | (4.2)

The finite element procedure discussed in Section 2 is employgd to calculate
the stresses and deformation in the strip. Expression (3.2) is used to cal-
culate the J integral.

The finite element grid which is used in both crack problems is shown ‘in
Figure 4, where by symmetry only half of the region needs to be analyzed.
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The crack geometry is specified by ¢/b = 0.1. To test the accuracy of the
grid, a linear elastic plane strain calculation is first made for a uniform
tension in the x2 direction. The J integral is evaluated along the contour
I' which consists of line segments (shown dotted in Figure 4) that join the
mid points of two prescribed sides of an element. Using appropriate values
of Young's modulus E and Poisson's ratio V, the stress intensity factor K
is determined from the computed J value and the relation

K= [BJ/(1 - vz |

and found to be 2.05 OoYC. This compares well with the known numerical
value of 2.15 ¢,/C reported in [15].

We now proceed to discuss our numerical results for the plane-strain
stretching problem and for the generalized out-of-plane shear problem.

(a) Plain-strain stretching: For q = 0.0, 0.5 and 1.0, incremental calcula-
tions for the stresses and deformation in the strip as functions of the
applied load 0o have been made. As in the case of plane-stress uniaxial
stretching stretching [2], it is found that an increment of 0.2 for 0o/Cy

is satisfactory. Figure 5 shows the computed J values plotted against the
nominal extension ratio A. For comparison purposes, the corresponding plane
stress results from [2] have also been plotted in Figure 5. We see that

When the J values in Figure 5 are normalized by the quantity 2Wge, all
curves coincide into one for A > 1.1 (see Figure 6). Here Wo is the elastic
energy density corresponding to o, (without the crack) given by

C; [(A? + §~— 3) + a(xé-+ 2X - 3)], for plane stress

Ci (1 +a) A%+ —%—— 2) , for plane strain.

X T (4.3)
That the quantity (J/2Woc), or equivalently (tearing energy/2Wqyc), is
dependent mainly on stretch ratio A was postulated by Rivlin and Thomas

[3] for the Stretching of rubber sheets with an edge cut (plane stress).
This was verified experimentally by Greensmith [16] who showed that it
holds true for c/b < 0.2. Thus for plane stress, results shown in Figure

6 are but a confirmation of results in [3,16]. However, that the quantity
(J/2Woc) in plane strain should also be independent of the material con-
stant o and that it coincides with values in plane stress for A > 1.1 are
new results. Although results shown in Figures 5 and 6 are obtained for a
specific crack geometry with ratio c/b = 0.1, they are expected to be valid

also for nearby ratios, e.g., 0 < ¢/b < 0.2, based on similar arguments
advanced in [3].

(b) Generalized out-of-plane shear: For a =0.0, 0.5 and 1.0, the computed
J values are plotted against t1,/C; in Figure 7. The dotted curve represents
the results for the corresponding anti-plane shear problem (u; = u, = 0).
For the latter problem, the governing differential equations are linear

(Green and Adkins [107, p. 86) and, hence, the J integral can be explicitly
expressed as

mc 2

To 2b mC
J = EET—TT:ET» 7o tan (55) B . ) . (4.4)

by using the elastic results in [17].
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For a = 0, the calculated displacements u; and u, are found to be identi-
cally zero, which means that the assumption underlying the anti-plane shear
deformation has precisely been met. Moreover, the calculated pressure is
found to remain constant for all stages of incremental loading. This is

in complete agreement with the analytical relation

2 2

[p + 2(1+20)]/Cy = -2aff —2 + e s (4.5)

derived in [10] for anti-plane shear deformations. For o # 0, u; and u,

do not vanish in general. The anti-plane shear assumption is therefore

no longer valid as indicated by the J results in Figure 7. To elucidate
this further, we have computed the quantity [p + 2(1+2a)]/C; for o = 1 using
the following procedures:

(1) the present finite element procedure without assuming
up = uz = 0;

(ii) the same finite element procedure assuming u; = u, = 0; and

(1ii) the analytical solution corresponding to anti-plane shear
(using c/b = ~ 0 for simplicity).

These results have been plotted in Figure 8 for To/C1 = 4.2. It can be
seen that the results of (ii) agree well with those of (iii) as expected,
but are significantly different from those of (i).

Finally, we compute the quantity J/2Woc where W, denotes the strain energy
density in the strip (without the crack) caused by the shear 1y at x2 = + b.
Let X be the extension ratio of an initial length in the x? direction, then
the strain energy density Wo can be written as

W, =Ci (1+a) (A% - 1) . (4.6)

The computed values of (J/2Woc) for o = 0, 0.5 and 1.0 are plotted in
Figure 9. The dotted line corresponds to the anti-plane shear result which
assumes a constant value of 1.58. From this figure it is seen that the
dependence of the quantity J/2Woc on both the material parameter o and the
extension ratio A is rather small. Hence, for practical purposes, it will
be sufficient to use the exact anti-plane shear solution (4.4) or, equi-

valently,
J b e
M, . elh 4.7
<2Woc> g T (2b> (+.7)

to calculate J.
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APPENDIX A

A finite element procedure

Let the domain D shown in Figure 2 be divided into an assemblage of quad-
rilateral elements. For each ¢lement the initial cartesian coordinates
(x!,x%) and the displacements u are mapped bilinearly onto a square s-t
domain for se[-1,1] and te[-1,1] by

o a(n)
X X
. = q_ (s,t), (A.1)
a n .i(n) n
where
q1 _
= (1+s) (1-t)/4,
92
qs3
= (1xs) (1+t)/4, (A.2)
qu

and the index n (n = 1,2,3,4) refers to the node number of the four nodes
of the quadrilateral.

473

R T IO s b s

-
-2
A
¢
-

S R A T B SRR



Fracture 1977, Volume 3

Denoting
T . . . . .
R N SR N O I O N
IT . . . . .
E = (Ev1, Ea2, 2F1,, 28, 2E23) ,

and making use of the strain-displacement relations (2.3), we obtain a
Mmatrix representation for the incremental strain-displacement relations,

E= (v ys) (A.3)

The matrices H, Y and B in (A.3) are defined as follows:

6,0 0 b, 0 o bs 0 0 bg 0 o |
B30 0 by 0 0 b, 0 0 by 0 o
O b1 0 0 b, 0 0 bs 0 0 b o

B = g (A.4)
0 by o0 0 by 0 0 b; 0 0 bg 0

H = 0 1 1 0o 0o o ; (A.5)

and
0w, w -
ERY 9x 3x
du v aw
0 — =i on
3y 0 dy g 3y
_ du du v dv oW Jw
1 = —_— RSty Pl S — —
¢ dy  dx dy  ox dy  ox (A:85)
0 0 0 0 0 0
__O 0 0 0 0 0
=

Here the coefficients bi are given by

by _ - ;
<b2) = [F 5,(1-0) -t _(175)]/4,
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+1

Sy(l-t) - ty(1*5)1/4,

()
6

7YV = [+ s (1+t) + t_(1+5)]/4
(7)1 3,000+ )

with
« B¥ = = = X
Sx T 8t/J’ Sy_ Bt/J’ te= BS/J’ ty B 85/J

and

In the above expressions, notation (x,y) stands for (x',x2). Similarly,
notation (u,v,w) stands for (uy,usz,us).
Making use of the variational equation (2.7) and letting

T _ (G'1, 6?2, G2, g13, g2y,

[}

i

§T = (s!!, s22, g1z s13, 523y

e
Y =
0 v
where -
(sll gl2
’Y:
glz g22

we obtain the following elemental equilibrium equations:

sesun) T $aa v BT v Gaa- g, (A.7)

where the integral is defined over the initial elemental area and £ denotes
the vector of incremental nodal forces corresponding to u. The displace-
ments y must also satisfy the incompressibility condition (2.8) which is
equivalent to

76T (H + yB) 4 dA = 0 (A.8)
by assuming a uniform p inside the element.

We now write the incremental stress-strain relations (2.10) in the matrix
form
S=QE+pg, (A.9)

where the dimension of the matrix Q is 5 x 5. Substituting (A.9) into
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(A.7) and combining the resulting equations with (A.8) gives the elemental
stiffness equations:

K T u £
N o I S (A.10)
o 0 P 0
where T T
K = J[(H+ B) Q (H+ yB) + B ¥ BJdA , (A.11)
(<
C= /G’ (H+ yB)dA . (A.12)

Matrix Q for Mooney Materials

For Mooney materials (4.1) and for deformations characterized by (2.1) the
stress-strain relations (2.9) are

S'1 = Cy[2 + 4a(1+E2) + p GI1]
S*% = C1[2 + 4a(1+E;1) + p G22]
Slz = C![-4(X ElZ +p Glz] L (A.13)
§'? = Ci[-4a E15 + p G'?]
523 = Cl[-401. Ez3 +p 623]
Using (2.10), the matrix Q in (A.9) is then given by
r~ =
0 0 0 0
0 0 0
Q = CICX 0
-2 0 0
- 0
symmetrical -2
L. =
"'7(Gll)2 Z(GlZ)Z ZGJ.IGIZ 2G11G13 ZGXZGIQ
2(G22)2  2g12g2? 2G12G23 2G22G23
(G11G224G12G12) (G11G23+G12G1Y) (G12G234G13G22)
-Cip (G11G23+G12G1 ) (G12G33+G1 3623y
symmetrical (622G633+G23G23) |
(A.14)
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APPENDIX B

To show that (3.2) is path independent, we begin with the volume integral
(over the undeformed geometry)

J€E.
005 2 adaxtan - prr L] W v | K gy (B.1)
V. oaxl v ik ki [ oax?

where V is an arbitrary volume in the undeformed state.
k ik

ax?
which is identically zero for incompressible materials, to the right hand
side of (B.1) and making use of (2.3) and (2.9) results in

. . ; du,
fff(%lk(Gi + qu) ——%) dx'dx?dx?®
% ’ ox! .
i
_ 3 [sikesd o ui v 2957 ytgueg,s
= /Is —|s (dk *ut) —= |dxldx’dx
vV 9x ’ ax

Adding S/f p G* dx'dx?dx?

R.H.S. of (B.1)

ik i : du.
IIr|s (5i + qu —J dxlax?dx?
v s

,iaxt
The last term in the above expression vanishes because

W
(5™ g + w1 ;=0

are the equilibrium equations for finite deformation. Applying the diver-
gence theorem to the remaining term and equating to the left hand side of
(B.1) gives

du.

17 M gxlaxzaxd = gr s‘k(si + ujk) v, —L dxlax?dx? , (B.2)
Vo oax!? 3V ) 3x!

where 9V denotes the surface which encloses V. The path independent pro-
perty of (3.2) follows immediately by integrating (B.2) over a volume which
is of unit length in the x? direction.
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(a) (b)

Figure 1 (a) Plane strain Stretching and (b) generalized out-
shear of a thick strip with a crack.

of-plane

Figure 2 Domain and coordinate system.
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Figure 3 Notation for defining the J integral

x2
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\

|
\

— b

| 7

Figure 4 Finite element grid for half of strip for c¢/b = 0.1. Dotted
contour indicates the path for calculating the J integral.
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Figure 5 Calculated J values vs. nominal extension ratio A for plane
strain and plane stress stretching.
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— Plane strain

...... - Plane stress

1.5 2

A

Calculated J/2Woc values vs. nominal extension ratio
A for plane strain and plane stress stretching.
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25 [\ s f A ]
} T/Ci= 4.2 |
=1 ! t @=1
— ‘ |
20 - FEM RESULTS 6 F !
_ SHEAR) ‘ a FEM RESULTS !
............ EXACT (ANTI-PLANE i ‘ o gm0 |
i r s - ANALYTICAL |
g o | | (ANTI-PLANE SHEAR) ‘
i =, | “ |
Tt
15 % }, A #
< T P\ |
o = ¢ } |
N " ; |
> | {
+ |
<= 0 T ‘J
= |
i L
{ |
f |
5 0 2 4 L] a 10
x'/¢
Figure 8 Distributions of normal stresses in the x? direction along
J x2 =0 calculated by different procedures.
b4 | ! L [
0 1 2 3 4 5

Figure 7 Calculated J values vs. shear stress Ty for generalized
out-of-plane shear.
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FEM RESULTS
EXACT (ANTI-PLANE SHEAR)

Calculated J/2W,c vs. nominal extension ratio A for generalized

out-of-plane shear.
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