Fracture 1977, Volume 3

912

Fracture 1977, Volume 3, ICF4, Waterloo, Canada, June 19 - 24, 1977

FAILURE PREDICTION OF FINITE FLAWED CERAMIC PLATES
UNDER COMBINED STRESSES

E. M. Lenoe and D. Neal*

INTRODUCTION

The motivation for this work lies in the necessity to choose appropriate
probability based failure theories for brittle materials. Ceramics such
as silicon nitride and silicon carbide are currently being used in a
number of high stress applications [1]. Since these are brittle materials
the usual design procedure for ductile behaviour is not applicable.
Therefore it is pertinent to explore methods to determine appropriate
failure theories.

Ordinarily the Weibull representation (2] is taken to approximate the
strength probability of failure, e.g.

o—ou m
Pf =1 - exp|- k_/: Oo dv (1)

where K is related to loading, v is the volume of material. o and oy are
fracture and threshold stresses respectively. oy is defined as zero for
the particular brittle materials considered in this paper. Up and m are
distribution constants determined from test data. Simple mechanical
properties tests are usually conducted to estimate the required data.
However, the extensive data required to accurately establish a statistical
basis for the analytical model is prohibitive. Furthermore preparation
of specimens for combined stress experiments is extremely costly. There-
fore relatively little work has been accomplished regarding probability
based failure theories for complex stress states. Thus the objective of
this analysis was to investigate the feasibility of using plates containing
circular holes and subjected to unidirectional and biaxial loadings to
¢stablish volume versus strength dependencey and also to discriminate
between potential combined stress failure theories. Results of analysis
under combinations of tension and compression loadings are reported for

a4 particular hot pressed silicon nitride, Failure distribution is found
to be sensitive to geometry and loading conditions and such plate tests
offer promise of aid in selecting alternate probability models [3, 4, 5].

STRESS ANALYSIS

The stress analysis reported herein is based on the modified mapping col-
location technique (6], which combines the advantages of boundary colloca-
tion with that of complex variable methods of Muskhelishvili [7]. A
simple form of a mapping function carrying a circle and its exterior in
the parameter plane into a circle and its exterior, respectively is used.
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The remaining portion of the boundary in the physical plane corresponds to
a directly calculable curve in the auxiliary plane. The continuation argu-
ments of Muskhelishvili are employed to describe stress functions with,

for example, traction-free conditions on the circle. Collocation methods
can then be introduced to satisfy the conditions on the remaining portions
of the boundary. This method is particularly useful for problems involving
multi-connected regions where determination of polynomial representation
of mapping functions is difficult.

[he above analytic approach avoids the inaccuracy and time consuming com-
putations as contrasted to the commonly used, Finite Element Method.

The stresses are expressed in terms of a single-stress function, U(x,y)
which satisfies the biharmonic equation,

VU = 0 (2)

The Airy stress function U(x,y) is defined [7] in terms of two analytic
functions of the complex variable z, namely ¢(z) and y(z), where

2
U(x,y) =Re[?¢(2J +f w(z)dz] (3)

using this representation, the stress and displacement components in rec-
tangular coordinates can be written as [7].

gt A, = 2[¢'(z) + 9'(2)]

ay -0, + ZiTxy = 2[z¢' ' (z) + Y'(2)] (4)

2u(uriv) = x¢(z) - 29'(z) - ¥(z)

3-v
1+v

E
where X = (Plane Stress) and | = Ta

The elastic constants are Poisson's ratio v and Young's modulus E. ‘If
xpdg and y,dg denote the horizontal and vertical components respectively,
of the force acting on an element of arc, ds, then

®(z) + z9'(z) + Y(z) = if (x,*iy,)ds (5)

Use of the extension concept of Muskhelishvili [3] provides traction free
conditions on the surface AB in Figure 1 if Y(z) is written in the fol-
lowing manner [7]:

b(z) = -z&F(é - 6(%) zes" )

5™ denotes exterior of circle in z planes. This extension definition of

) provides single stress function ¢(z) representation in addition to trac-
tion free conditions. The function ¢(z) can be represented by a Laurent
Series of the form

914

Part VII - Non-Metals

2(z) = TZ; un z2n+1 o)

where T is average applied stress on CD in Figure 1 and Qnrg are real.
Since the traction free surface on AB is satisfied then it is only neces-
sary to consider the outer boundary conditions on CD and DE in Figure 1.
These conditions are satisfied by choosing a finite number of boundary
stations on the boundaries and prescribing the proper stress and force
conditions at these points. The Qg for the truncated series equation (7)
are determined from satisfying the above conditions. The coefficients are
determined in least squares sense in that the number of conditions exceeds
the degrees of freedom by ratio of two to one.

PROBABILITY THEORY

The probability of failure P¢ determinations are made for the ceramic
plate with hole using the Weibull model equation (1). P¢ is defined
as 1 - Ps, where Pg is probability of survival. The model was
selected for this initial evaluation of flawed plate testing.

The advantages of the method include, first, the ability to represent vari-
ability of mechanical properties by considering distribution flaws as func-
tions of volume, and secondly, Pg for large complex structures can be
determined from knowledge of material properties of small simple test
specimens. This is an important consideration for ceramic materials which
exhibit large variations in strength values. The disadvantage involves
using the weakest link hypothesis where failure occurs at weakest point in
structures. For certain brittle material this is not a problem as verified
by a number of test results. Weibull statistic should be applied where
appropriate for the particular material characteristics. The Weibull
distribution function for the case of probability of fracture is

g-0 n
P. =1 - exp| -Kv L (8)

£ o
(o]

for the small volume or an individual element in which the stress can be
assumed constant and the other parameters are defined in equation (1).

It should be mentioned that application of the Weibull equation (8) to
brittle fracture is based strictly on empirical considerations. The
Weibull parameters m and O, are determined from the solution of a trans-
cendental equation developed from knowledge of the first three statistical
moments of the available strength data. The solution involves applying an
iterative scheme using a ''digit-place" algorithm. This algorithm elimin-
ates the necessity of drawing graphs and applying interpolation methods,
while providing any desired accuracy.

The Weibull distribution is applied to the problem of a ceramic rectan-
gular plate with hole as defined in Figure 2. The stress distribution
within the structure is determined for the plane stress conditions using
the method described previously. Instead of evaluating individual prob-
ability values with finite volume elements of the structure and multiply-
ing these probabilities to obtain Py for a particular applied load T, the
procedure used in this paper involves a numerical integration. This
approach provides a more accuate evaluation in addition to reducing com-
putation time. The probability of failure P¢ for individual stress com-
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ponents is written in terms of parameters in Figure 2 as

£,
i

P. =1 - exp [KG(Oi)] (9)
where 0;, 0, and 0, designate principal stress components respectively
distributed within the structure and

Ty LT/2 a. \"
G(o;) = -tf { r(ai> dédr (10)
r)

(6]

The integration scheme is applied only to the first quadrant due to the
symmetry considerations: 71, is defined as radius of hole, r; is deter-
mined by location of uniform stress conditions of structure. t is the
thickness of the plate. K is defined as unity for the uniform tension
case.

Evaluation of Pg¢ for all three stress states may be written as

Pf 8 ] epr[é(Ul) + G(oz) + G(Oa% (11)

NUMERICAL RESULTS AND CONCLUSIONS

Sheet dimensions in Figure 2 are L = 2.0 and W = 0.5. In order to eval-
uate the effects of different loading conditions, biaxial, uniaxial and
pure shear conditions are considered. Uniaxial loading is initially
determined then a superposition argument is used in order to determine the
other two loading states. The number of stress function coefficients
were set at 23 to 31 depending on the desired accuracy of the stress and
force conditions on the rectangular boundary. When the stress function is
determined, stresses may be obtained within the structure for any desired
points with a simple computation. This avoids the necessity of resolving
the problem a number of times which is common for the Finite Element
procedure.

[n the numerical integration scheme, mesh spacing is varied according to
stress gradient; a finer spacing is used in vicinity of higher stresses.
The spacing was increased systematically until there was es-

sentially no change in Ps values for the first five significant digits.
The scheme required one and three segment evaluation for tangential and
radial directions respectively in order to reduce computation and provide
the desired accuracy. The number of mesh points selected were 21, 23, 15
and 9 respectively for the tangential and radial directions. Negative
stress values were neglected because of their relatively small magnitudes.
Although the analysis has the capability of accounting for their effects.

Initially the problem was solved by determining P values for the indivi-
dual volume elements in the structure. These values were multiplied to-
gether in order to obtain the total Ps of the entire structure. The
accuracy of this method was limited because of the slow convergence of
Ps as the number of elements increased. For 1000 elements, changes were
still noted in the third significant digit of P,. This convergence dif-
ficulty is also quite common for Finite Element application.

Part VII - Non-Metals

In Figure 3, Py (probability of survival) is a function of the three stress
components where 0, is primary governing parameter. Considering the indi-
vidual stress in relation to Pg calculations 0, and 03 obtained minimum
values of 97% and 99.9% respectively for the largest volume and pure shear
loading conditions. Figure 3 describes effects of volume, applied load and
variation in stress state within the Structures. From Figure 3, it is
obvious that loading conditions as well as volumetric factors have import-
ant influence on probability of failure determinations of geometry con-
sidered. The authors are presently conducting an experimental study of
these predictions.
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Figure 1 Boundary Definitions for Plate
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Figure 2 Rectangular Ceramic Plate with Hole
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