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ELASTODYNAMIC EFFECTS ON CRACK BRANCHING

J. D. Achenbach*

INTRODUCTION

If a homogeneous, isotropic, linearly elastic solid containing a plane
crack is loaded so that the analytically computed singular parts of the
near-tip stresses are symmetric relative to the plane of the crack, one
might perhaps expect the crack to propagate in its own plane, when the
pertinent stress intensity factor reaches a critical value. Experimental
evidence often shows, however, the phenomena of skew crack propagation
and crack bifurcation, especially for rapidly propagating cracks. Al-
though it has been suggested by several authors that elastodynamic effects
play an important role in crack branching, analytical investigations have
only recently become available for antiplane strain, see references [1]
and [2]. The computation of the elastodynamic fields has presented the
principal obstacle.

The general nature of elastodynamic near-tip fields for the case that the
tip of a crack propagates rapidly along a rather arbitrary but smooth
trajectory in a two-dimensional geometry, was discussed by Achenbach and
Bazant [3]. Let a crack be propagating in its own plane with speed v(t),
and let a system of moving polar coordinates be affixed to the moving
crack tip. For symmetric opening up of the crack (Mode I) we have in

the vicinity of the crack tip.
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In equation (1), TI(O,V) =1, and ki(t,v) is the elastodynamic stress
intensity factor. eThe function Té(e,v), which is complicated, is shown
in Figure 1. It is of note that the maximum value of T%(G,V) bifurcates
out of the plane 8 = 0 (the plane of crack propagation) as v(t) increases
beyond a certain value.

The curves of Figure 1 could be used to suggest an explanation for crack
bifurcation, if it is assumed that a crack tip follows the maximum value
of the stress intensity factor. If this would happen, bifurcation should
be expected at a crack tip speed somewhat higher than 0.6 c¢r. One then
would expect the crack branches to curve gradually out of the original
plane, since the maximums gradually move out of 6 = 0. Experimental re-
sults do, however, not substantiate this explanation. They show that the
experimentally observed pre-bifurcation speed is lower than 0.6 cp, and
that bifurcation happens with a specific half-angle, in between 16 and 20°
Thus, the results of Figure 1 do not offer a direct explanation of crack
bifurcation, and further study is necessary. Such further study is the
topic of this paper.
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APPROACH

In the work presented here we take the view that branching of a running
crack is an instability phenomenon, and that a necessary condition for
branching can be determined by comparing states prior to branching and
after branching has taken place. The comparison requires expressions for
the elastodynamic fields near the tips of the branches. An analytical
study of skew crack propagation or crack bifurcation thus consists of two
parts. In the first part an expression is derived for the elastodynamic
Stress intensity factor for the pertinent geometry. In the second part a
necessary condition for the particular type of crack propagation is estab-
lished on the basis of the fracture criterion of the balance of rates of
energies.

Details can best be explained by the relatively simple case of deformation
in antiplane strain. Let us consider a semi-infinite crack propagating
at velocity v(t). The near-tip elastodynamic stress is of the form
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where Téil(o,v) = 1. For a semi-infinite crack we have

kppp(8sv) = (1 - v/ep) ¥k  (t) (3

where Kyrr(t) is the stress intensity factor for the corresponding quasi-
static problem. Equation (3) is also valid for a crack of finite length,
but only for very small times after crack propagation has started. It is
noted that kypy(t,v) > 0 as v » ¢, i.e., as the speed of crack propaga-
tion approaches the velocity of transverse waves.

A propagating crack tip acts as an energy sink. It is quite simple to
compute the flux of energy into the crack tip. For Mode III fracture the
result is

v
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The energy release rate G and the flux of energy into the crack tip, F,
are related by F = Gv. The balance of rates of energies provides the
following necessary condition for fracture

F=2Twv ‘ (5)

where I' is the specific energy of crack extension, i.e., the energy re-
quired to produce one unit of fracture surface. Equation (5) is not only
a necessary condition for fracture, but it also provides an equation for
the computation of v.

At time t = t, the crack branches. This process is thought of as the
arrest of the primary crack, instantaneously followed by the emanation of
the branch or branches. If the branches propagate with velocities v < ¢,
they propagate into fields that have already received signals from the
arrest of the primary crack, since the latter propagate with velocity cg.
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The singular part of the stress field radiating from the arresting crack
is obtained from equation (2) by setting v = 0:

1 1 0
Tez~ ——(zn) ™= I‘? cos (—2—> KIII (tb> H(t—tb) (6)

This stress field must be removed from the surfaces of the branches, to
render the branches free of shear Stresses. Note that here we are inter-
ested only in very small times after branching, so that additional terms
in equation (6) do not enter.

The computation of the stress-singularities at the tips of the branches is
complicated. If the loading conditions are of a special type, the elasto-
dynamic fields for skew crack propagation or crack bifurcation of a semi-
infinite crack are, however, self-similar. These fields can then be
analyzed in a relatively simple manner. Elastodynamic fields that are not
self-similar can subsequently be obtained by approximate superposition
considerations, see reference [2].

SOME RESULTS

The elastodynamic field which is generated when a branch emanates assym-
metrically from the tip of a stationary semi-infinite crack, when the
surfaces of the crack are subjected to shear tractions Tgy = - TH(t) is
first investigated. The shear tractions give rise to plane waves and a
cylindrical diffracted wave centred at the original crack tip. The semi-
infinite crack propagates at an angle xT and with velocity v, where

vV < cr, at the instant that the surface tractions are applied. At time

t > 0 the crack tip is located at point D, see Figure 2. For this problem
the particle velocity is self-similar. For a similar problem, details
can be found in reference [1]. Relative to the system of moving coordin-
ates shown in Figure 2 we find near the tip
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The function K(x) follows from equation (3.8) of reference [1] by setting
o = 0 and Wo = TQCT/IJ.

The results obtained above can now be used to analyze the conditions for
the emanation of a single branch from a running crack. After branching
of the running crack, the shear stress near the branch tip is of the
general form

* 1 [ 111
foz ™ (2m) 12 L1 Krr (6 To,"(0,0) b

where t = t - tp. We have found that the near tip stress field for in-
stantaneous skew crack propagation upon the application of equal and uni-
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form antiplane shear tractions to the two semi-infinite surfaces of a
stationary crack is given by equation (7). If for that case the crack
does not branch, nor propagate in its own plane, the near tip stress

field is

U2 2¢\ ¥
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Clearly, the result (7) can be regarded as being the consequence of re-
moving stresses of the form (10) from the crack branches. Thus, we now
have a known stress (7) due to the removal of the known distribution of
surface tractions (10), and an unknown stress (9) due to the removal of
the known distribution (6). Apart from constants the difference between
equations (6) and (10) is, however, only in the time dependence; equation
(6) contains a step time dependence, while in equation (10) the dependence
on time is as t¥2, These results then suggest that at least for small
times kfII and kyyy are related by superposition considerations as

t
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This equation can easily be solved for ki as

* ~ v2 1 \¥2 TTKgx)
k111 - (1 - _2') 2c. v Ty Ry % (12)
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The corresponding flux of energy into the crack tip can be computed by
employing equation (4). The noteworthy result is that the rate of energy
flux into a propagating crack tip shows a maximum at x = 0 only for
values of v/cy which are smaller than approximately v/cp = 0.27. Appar-
ently the rate of energy flux into a crack tip can be higher for skew
crack propagation than for a crack propagating in its own plane.

The tendency towards skew crack propagation can be examined on the basis
of the balance of rates of energies. This fracture criterion is stated
by equation (5). For essentially brittle fracture I is the specific
surface energy, which is independent of x. In a plot of F vs. x and 2Tv
vs. x for specific v/cT, the term 2I'V is then represented by a horizontal
line. 1In accordance with the balance of rates of energies, the values
of v and x are determined by a point of intersection of the curves for F
and 2I'v. Since both v and x are as yet unknown an additional condition
is required. Such an additional condition is that only an intersection
where 2I'v is tangent to F (i.e., F is a maximum with respect to x) de-
fines a case of stable crack propagation relative to variations of x.
Thus, in Figure 3, the maximums of F with respect to x have been re-
plotted versus v/cT, and values of x at which the maximums of F are
reached have been indicated. In this figure 2I'v is a straight line
through the origin. The intersection of 2I'v and F defines a case of
crack propagation and the pertinent values of v and x follow from the
point of intersection in Figure 3. The foregoing discussion defines I
as the principal quantity controlling skew crack propagation. For small
enough I', 2I'v is tangential to F at x = 0, and thus v/cT will be relat-
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ively small and the crack will propagate in its own plane. For large
values of I' the relevant intersection is at » > 0, i.e. skew crack prop-
agation can be expected.

An analogous analysis for crack bifurcation in antiplane strain was pre-
sented in reference [2].

THE IN-PLANE PROBLEM

Computations of deformations in antiplane strain (Mode III), though im-
portant for geophysical situations, are of minor practical significance
for engineering problems. Solutions of antiplane problems do, however,
frequently suggest the proper steps for the attack on in-plane problems.
There are, however, some important differences in the basic fracture
mechanics of the antiplane and inplane cases, and these should be kept in
mind. For example, for inplane deformation the branches of a primary
crack are subjected to both Mode-I and Mode-II fracture conditions. Mixed
fracture conditions do not occur for crack bifurcation in antiplane strain.
Thus it is necessary to analyze the inplane problem separately.

The case of inplane strain is, of course, must more complicated. In the
physical plane the region in which the stress field must be analyzed con-
sists of wedge-shaped segments which are connected ahead of the propag-
ating crack tip(s). For inplane deformations there are two wave equations
governing the displacement potentials. By taking advantage of self-
similarity, these wave equations can be reduced to Laplace's equations in
half-planes. The solutions to these equations are, however, coupled along
the real axes by conditions which stem from the conditions along the crack
surfaces and along the wavefronts. The coupling conditions give rise to
singular integral equations for the displacement potentials. A numerical
scheme based on series expansions in terms of Chebyshev polynomials has
been developed to obtain numerical solutions. Results are forthcoming.
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Figure 1 Function Té (6,v) versus 6 for Various Values
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