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ELASTIC CONTACT PROBLEMS IN FRACTURE MECHANICS

B. Billy E. Fredriksson*

INTRODUCTION

During a load cycle an existing crack may partially close causing the
fractured surfaces to make contact. This would of course influence the
stress field. The frictional forces arising at the contact surface could
be expected to influence the direction of crack propagation. Contact
problems in fracture mechanics have been studied by some authors. Askogan
[1] presents a solution to the elastic problem of a closing Griffith crack.
Paris and Tada [2] studies a closing elastic single edge crack loaded in
mode I. Newman [3] studies the effects of closing cracks in fatigue crack
propagation. Erdogan and Gupta [4] studies contact and crack problems of
elastic wedges. All of these solutions are restricted to specific types
of geometries and loadings and do not include friction. In the present
paper an attempt is made to do a unified approach to elastic contact pro-
blems taking frictional effects into account.

In order to obtain a solution which takes the frictional effects into ac-
count a general slip criterion with associated slip rule is introduced.

As a special case of the general one a Coulomb type of slip criterion is
used in the numerical calculations. The incremental governing equations
for elastostatic contact problems with friction are solved by means of the
finite element method. Attention is focused on an existing crack that may
partially close during a load cycle. Considering a virtual crack growth
the crack extension work is derived by applying the principle of virtual
work. The energy dissipation due to friction at the contacting surfaces
is obtained.

A finite element computer programme for two-dimensional elastic, plane and
axisymmetric, problems has been developed. Stress intensity factors are
calculated and the effect of crack closure is shown. Crack extension work
for different virtual propagation directions is calculated and the effects
of crack closure and frictional properties are shown.

STATEMENT OF THE PROBLEM

Consider a body containing a crack which might have closed due to the
loading (Figure 1). The problem is studied in the orthogonal cartesian
coordinate system x;, Xj, X3. In order to facilitate the study of oblique
or curved cracks, a local coordinate system ni, Nz, N3 is introduced. n,,
Ny defines the tangent plane to the crack surface. We indicate the material
on one side of the crack with A and the other with B (Figure 1). n; is

then defined as the outward normal vector from B. Temperature effects and
dynamic terms are omitted. The body is assumed to be loaded by surface

loads q; on I'q and volume loads Xj in V. The displacements are assumed to
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be prescribed on Iy. The crack surfaces are assumed to be in contact on
Te. On Tip the cracked surfaces are not in contact and are unloaded.

THE CONTACT PROBLEM

Bodies generally contact each other through small irregularities in their
surfaces. The applied normal load forces the summits of irregularities to
flow plastically and/or to crush down until their cross sections are suf-
ficient to support the applied load. It is easy to understand that the
type of contact is different at different summits. At some there may be
cold welding and micro-seizure and at other summits we have merely elastic
contact. When shear forces arise the joint surfaces are displaced. The
displacement ceases when the micro-seizure points within the real contact
area have reached sufficient numbers to be able to offset the applied tan-
gential load. When a stable condition is attained some of the summits are
in adhesion or a welded state and others are in a state of elastic contact.
It may be reasonable to assume that elastic and small plastic deformations
appear at the adhesion points and that relative displacements appear at the
elastic contact points. As a consequence of these assumptions it can be
understood that a micro-slip appears even though the applied tangential
load is smaller than the sliding force as determined by using the macro-
scopic coefficient of friction. Based upon these ideas a general contact
constitutive relation will be introduced. The contact surface is assumed
to be ideal and free from the above mentioned irregularities. The consti-
tutive relation relating the contact stresses and the slip will however

be derived in order to satisfy the real case. The derivation is analogous
to the derivation of the flow rule in the theory of plasticity.

Consider the cartesian coordinate system ni, Nz, N3 at a contact point given
on FC. The contact stress increment vector is written

dpi = (dpi, dp2, dps3) on FC 8 (1)

In the following, when the indices a, B, Y, 8§ occur, they are assumed to
range from 1 to 2 and refer to the local coordinate system n;, na, n;.

A detailed derivation of the slip rule is given by Fredriksson [S]. The
derivation of the slip rule is based upon two basic assumptions.

1) The slip increment dvy is linearly dependent on the contact stress
increment. That is,

= A B _
dv_ = du’, - du = haB dp8 (2)

2) There exists a slip surface g(pi) = 0 in the contact stress space
on which slip will occur. At each state of the slip no further slip will
occur unless

%8 gp. >0 . (3)

The first assumption implies that the slip has the same direction as the
outward normal vector to the locus generated from the intersection between
the surface and the plane p3 = constant.
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For slip hardening we obtain

| (98/3p) (38/3p,) X
Vo~ 1 Berong Gerangy Ps on T @

when

g =0, §§T dp; >0, py < 0.
1

St : : . . e
[C is the part of I'., where the slip criterion is satisfied. In the part

Fg of T, where the slip criterion is not satisfied there is no slip incre-
ment and the displacement increment must satisfy

_ a.A B _ a
dva = dua - dua = 0 on Fc . (5)

If we assume Zdeql slip (4) is replaced by the 'slip rule

= x 2B s
dva A 50 on FC (6)
a
A >0 when g = 0 and gg—-dp. =0, ps <0
2 By '1
A =0 when g < 0 or, g dp. <0, ps <0

9 . o .

ng dpi > 0 does not exist in ideal slip. In ideal slip the slip surface
is*fixed.

The functions g and L depend on properties of the contact surface, for
instance type of material and surface roughness. In the case of ideal
slip the parameter A is indeterminate.

Assuming Coulomb isotropic slip criterion [5] we obtain
ep) = L pp )+ <0 7
i TR P3, P3 (7

and the associated slip rule for hardening slip

dpg (8)

U is the coefficient of friction.

For ideal slip we obtain
pOLdet

dvaz)‘W’ (9)

[ntroducing the effective contact stress

= 12 ,
Pe = (pyp,) (10)
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and the effective slip
v = . “ 12 ;
v, J dve, dve (dvd dva) (11)

it can be shown [5] that for slip hardening

du(ve)

L = —pe T . (12)

Thus, the single curve p = H(vy) yields both the shear stress necessary to
obtain slip and the function L, which might be called the slip modulus.
For ideal slip L is zero and equation (9) has to be used. The parameter A
is indeterminate and the stiffness properties of the contacting bodies
must be used to obtain the slip increment.

Furthermore, the displacement increment perpendicular to the contact sur-
face must satisfy the kinematical condition

du - aud = 0 on r_ . (13)

CRACK EXTENSION WORK IN CRACK CLOSURE PROBLEMS

Consider a virtual quasistatic crack growth. It is assumed that macro-
scopic (continuum mechanics) theory is applicable [6]. The virtual quasi-
static crack growth generates a new crack surface Fzr with a corresponding
fracture area AS. The work done on the fracture process zone per unit of
fracture area [7] during this virtual growth from state 1 to state 2 is
the crack extension work G [7]

G = - lim -2 2
Aswo AS Lo LT q; du,fda . (14)
Ter \}

-qj is, by definition, the stress vector acting from the continuum on the
fracture process zone.

By applying the principle of virtual work the crack extension work can

alternatively be expressed in global terms. Assume an infinitesimal virtual

crack growth with corresponding displacements duj. Applying the principle
of virtual work to the total stress field we obtain

Joo..de.. dV + S p dv_ dl = [ X, du, dV +
vy 1J 1] T a o 1 i

& %
* p oq; dug dr+ £+ q; du; dr (15)
I'q lo5

where it is assumed that du; = 0 on Iy The strain increment dejs and

the slip increment dv, are both compatible with the displacement incre-
ment.
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Integrating equation (15) from state 1 to state 2 and introducing the total
potential energy increment

2 2 2
Al =SS %43 deij - f Xy dugjdv - J [ [ q; du,)dr (16)
vV \1 1 T 1
q
we obtain
2 2
Al - S | S Py dv Jd = - J s q dug Jdr . (17)
T\l r+ \1
o cr

Assume that the process is described using the fracture area S as a para-
meter [7]. Dividing equation (17) by the finite increment AS we obtain
in the limit

-II' - Cc' =g (18)

where

is the change in total potential energy per unit of fracture area and

2
o1
C' = limsz/ [/ p. dv )dr (19)
AS>0 AS I‘C (1 a a)

is the dissipated energy due to friction at the contact surface. Thus the
sum of G and C' expresses the total energy dissipation.

From equation (18) it can immediately be concluded that the frictional
properties influence the crack extension work G. When there is no friction
present C vanishes. Although C vanishes the closure of the crack still
influences G since the stress field is influenced and thereby the potential

APPLICATIONS

The incremental governing equations for the contact problem are solved by
means of the finite element method [8]. In the computer programme Coulomb
slip criterion with associated ideal and hardening slip is included. The
surfaces of the existing crack (or cracks) are defined as contact surfaces
and the nodes in the finite element model are defined as contact nodes.
The contact nodes at the crack tip may be allowed for cohesional forces.
The external nodes are next applied and the contact nodes are checked for
closure. When closure occurs iterations are performed until the slip rule
is satisfied and convergence is achieved. By releasing the pair of con-
tact nodes at the crack tip the crack extension work for a finite crack
growth may be calculated. Relaxation must generally be performed incre-
mentally because of the nonlinearity at the contact surface. This method
of relaxation was first suggested by Andersson [9] and is also used by
Hellan [7].
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Stress Intensity Factor Calculations

[n terms of the stress intensity factors the crack extension work for
coplanar extension is written

_ 1+v Ik+1 2 2 2
6= [4 (KI * KII) * KIIIJ . (18]

Ki» Kr1 and Kypy are the stress intensity factors in mode I, II and III
respectively [7]. For plane strain « = 3 - 4v and for plane stress
K = (3-v)/(1+v).

The present method has been tested on a plate of unit thickness in a state
of plane strain with a single edge crack subjected to tension and moment
loads in mode I. In Figure 2a the stress intensity factor in pure tension
is shown as function of the crack length and compared with the solution by
Gross [10] for an infinite strip with a single edge crack. Next a moment
load was applied and the stress intensity factor calculated. The result
is shown in Figure 2b. As the moment is applied the stress intensity
factor decreases linearly until the crack starts to close. The linear
decrease in the stress intensity factor then ceases. When the crack is
closing the problem becomes nonlinear. The stress intensity factor is
almost constant after crack closure. This is in agreement with the result
presented by Paris and Tada (a/W = 0.55). Due to conditions of symmetry
the frictional properties do not influence the result.

Crack Extension Work in Crack Closure Problems

The crack extension work for the single edge crack previously studied was
computed for different types of loading (Figure 3a). Different virtual
crack propagation directions ¢ were studied and the crack extension work
was calculated. Applying the criterion of maximum crack extension work
[7] the crack propagation direction may be predicted.

The plate was first assumed to be loaded in pure tension 0o and in pure
tension plus antisymmetric shear F, M. The normalized crack extension work
as a function of ¢ is plotted in Figure 3a. At this loading no contact
forces arise. Computations were done for nine virtual propagation angles
$ from -90° to +90°. Gpax 1s the maximum crack extension work in tension
plus antisymmetric shear loading. From the pure tension curve it is seen
that G has a maximum at ¢ = 0 and that coplanar extension is predicted.
This result is in agreement with previous findings. Some discretization
errors are observed. In the case of tension plus antisymmetric shear the
maximum G appears at ¢ = -40°. If the critical G was reached the angle

of propagation is predicted to -40°, that is, the crack tends to propagate
downwards in a combined mode.

The plate was next simultaneously loaded in tension, in antisymmetric shear
and in compression. The crack then partially closes. The influence of the
frictional properties on the crack extension work G was studied. G was
calculated for five different directions of virtual crack extension, from

0 to -90°. In view of the first example it is evident that the G has
maximum for ¢ between 0° and -90°. In Figure 3b the normalized crack
extension work for the frictionless case is compared with the case of
friction. An ideal Coulomb model with U = 1 was assumed. Gpax 1is the
maximum crack extension work for frictionless case. From these results

it could be concluded that the crack extension force is decreasing when

432

Part V - Analysis and Mechanics

Eaking frictional effects into account. Energy is dissipating at the sur-
face of contact. This effect of course decreases the risk for crack pro-
pagation and gives a less dangerous situation. As the present loading
conditions the crack surfaces starts to make contact at the left and the
contact developes inwards. When the antisymmetric shear is applied slip
takes place over the whole surface of contact. When the crack is virtually

gxtgnded downwards the contact continues to develop inwards and the slip
1S increasing.

CONCLUDING REMARKS

A method of taking contact and frictional effects in crack closure problems
into account was presented. Stress intensity factors was calculated from

at different angles the crack propagation direction was predicted. When
Studying cracks in combined modes it was shown how the present method

c?ulq be used to study effects of frictional properties when the crack is
closing.
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Figure 1 An Elastic Body Containing a Partially
Closed Crack
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Figure 2 Single Edge Crack. FEM-Model: 178 Constant Strain Elements,
268 Degrees of Freedom. Stress Intensity Factors in

a) Pure Tension
b) Tension and Bending
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Figure 3 Single Edge Crack.
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Normalized Crack Extension Work in

a) Tension and Antisymmetric Shear
b) Tension, Compression and Antisymmetric Shear
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