Fracture 1977, Volume 3

892

Fracture 1977, Volume 3, ICF4, Waterloo, Canada, June 19 - 24, 1977

DEPENDENCE OF LIFETIME PREDICTIONS ON THE
FORM OF THE CRACK PROPAGATION EQUATION**

S. M. Wiederhorn*

INTRODUCTION

The science of fracture mechanics has provided engineers with a new design
technique for estimating the total allowable time that ceramic components
can support mechanical loads [1]. Fracture mechanics are used in this
application because ceramic materials fail by brittle fracture caused
primarily by the growth of pre-existing flaws or cracks. When these flaws
are subjected to mechanical stress they grow to a critical size, at which
point abrupt failure occurs. The time required for cracks to grow from

a subcritical to a critical size determines the time-to-failure.

In order to determine the time-to-failure of ceramic components it is
necessary to characterize three parameters: the initial flaw size, the
critical flaw size at which abrupt failure occurs, and the rate at which
cracks grow from initial to critical flaw size. In fracture mechanics
terms these parameters are: the critical stress intensity factor, Kic:
the stress intensity factor, Kij, at the most serious flaw when the com-
ponent is first subjected to a load; and the functional dependence of
crack velocity on the stress intensity factor, v=v (K1). Using these
parameters the time to failure can be calculated from the following equa-
tion:

ST
P 2 2
t= (202 Y )fK (K /v)d K, (1)
i

The parameters of equation (1) can be evaluated either by fracture mech-
anics techniques or by strength techniques. Fracture mechanics techniques
can be used to obtain the critical stress intensity factor, and the re-
lationship between the crack growth rate and the stress intensity factor
directly. The initial stress intensity factor, Kii, however, must be
determined by other techniques because the initial size, a, of the crit-
ical flaw on which Krj depends (K = 0,Y/a) is small. For this reason,
direct nondestructive techniques (at the current state of the art) cannot
be used to estimate Kyj. The two techniques that are used to obtain
estimates of the initial stress intensity factor: are the proof testing
technique which provides an estimate of the maximum flaw size [2]; and
the statistical technique which characterizes the flaw size as a function
of the cumulative failure probability ([2,3].

Recently, Ritter and Meisel [4] have shown that equation (1) can be ex-
pressed in alternative form, in which the parameters of the equation are
evaluated by strength measurement techniques. One advantage of this new
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approach to estimating the failure time is that it can be used in labor-
atories that do not have the more elaborate equipment required for frac-
ture mechanics determinations.

Regardless of which technique is used to evaluate the constants of equa-
tions (1) the reliability of the predicted time-to-failure depends on the
accuracy with which the parameters of equation (1) can be determined. In
a recent set of papers the effect of errors of measurement on equation (1)
has been determined for both fracture mechanics techniques and stress
measurement techniques [5,6]. Although it was noted in these papers that
the confidence limits for the time-to-failure also depend on the form of
the crack propagation equation, this aspect of the failure problem has not
been discussed extensively. This paper presents a discussion of this
aspect of failure prediction techniques.

FORMS OF THE CRACK PROPAGATION EQUATION

Various equations have been suggested to describe the dependence of crack
propagation rate on applied stress intensity factor [7-10]. While some

of these were suggested on the basis of theoretical models of crack growth,
others were suggested because they give good empirical fits of the exper-
imental data. The four equations that will be examined in this paper are
presented below:

v=v, exp (B'K)) (2)
v=v_ exp (B"K2) (3)
v=A K] (4)
vav,, exp (-a/K;) (5)

To demonstrate the sensitivity of the estimated failure time to the form
of the crack propagation equation, equation (1) was evaluated for two
glass compositions: a soda-lime-silicate glass, and an ultra-low expansion
glass (92.5% Si02; 7.5% Si0z). Fracture mechanics techniques were used

to determine the parameters in equation (1), while the initial stress
intensity factor was determined by the proof-test method. The two glasses
selected represent the extremes of crack propagation behaviour observed
for most glasses. The data on the ultra-low expansion glass was collected
in water; while the data on the soda-lime-silicate glass was collected in
air, (50%) relative humidity. The doube-cantilever-beam technique was
used to obtain both sets of data and replicate runs were obtained for

cach glass: three for the ultra-low expansion glass, and two for the soda-
lime-silicate glass.

EXPERIMENTAL RESULTS

The crack propagation curves obtained in this study are presented in
Figures 1 and 2. In each of these figures the crack propagation rate 1is
plotted as a function of the stress intensity factor in a form suggested
by equations (2) - (5). A straight line was fitted to the data by the
method of least squares, minimizing the error along the axis representing
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the stress intensity factor. In addition a plot of the residuals was
obtained as a function of the crack velocity in order to accentuate the
curvature of the fit. For the sake of brevity, these plots of the res-
iduals are not presented in this paper.

For the ultra-low expansion glass (Figure 1) the best fit was given by
equation (4). Scatter of the data points about the least fit line was
random over the entire range of data points. The next best fit was given

by equation (2), for which a slight curvature was observed. The data showed
a negative deviation from the best fit line over the middle range of crack
velocities and a positive deviation at both low and high velocities. How-
ever, the curvature of the data for equation (2) was not as great as that
exhibited for equations (3) or (5). The most severe curvature of the data
was obtained for equation (3), which showed the largest deviations from the
best fit line over the entire range of crack velocities.

At the very low velocities, less than 10719 n/s, the data (Figure 2) for
the soda-lime-silicate glass exhibited a rapid decrease in crack velocity
that was very suggestive of an approach to the static fatg%ue limit.
Because of this decrease, data at velocities less than 10 % m/s were not
used in the least squares fit. In all, five data points of the set of 60
were eliminated from the least squares fit for the equations. The data
for the soda-lime-silicate glass was curved for all four equations under
discussion. The best fit and the least curvature was obtained for equa-
tion (2). Here the deviations were greatest at the lowest and highest
velocities. From 10°° m/s to approximately 3 x 10 ° m/s the straight
line fit indicated no perceptible curvature of the data. By contrast the
logarithmic fit, equation (4), did exhibit slight curvature over the
entire range of data, exhibiting a positive deviation from the best fit
line in the mid-range of the data and a negative deviation both at the
nigh and the low crack velocities. The worst fits were obtained for
equations (3) and (5), for which severe curvature occurred over the entire
range of data. In both cases the deviations were negative in the mid-
range of the data and were positive for the higher and lower crack vel-
ocities.

DISCUSSION

From the data presented in this paper, we conclude that the best fit of
the crack propagation data for glass is obtained by using either a log-
arithmic representation (equation (4)) or a semi-log represented (equa-
tion (2)) of crack velocity data. This conclusion is supported by studies
conducted on other glasses not presented in this paper. Equation (3)
gives by far the worst fit to the experimental data, while equation (5)
gives a fit that is somewhat intermediate between equations (2) and (4)
on the one hand and equation (3) on the other hand. However, considering
the slight curvature that is exhibited by all of these fits within the
data range, it can be concluded that any of the representations will
adequately predict time-to-failure over the range in which the data were
collected. It is only when the data must be extrapolated beyond the data
range that the type of fit becomes important.

The sensitivity of equation (1) to the form of the crack propagation
equation is illustrated in Figure 3, which is a logarithmic plot of
Gaz tnin versus the proof test ratio O /Oa. The three curves on this
plot were calculated for equations (2), (4), and (5). Equation (3) is
not presented because it gave the poorest representation of the crack
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velocity data within the data range. On each curve the vertical line
marks the upper proof test value, which is determined by the lowest mea-
sured crack velocity. Time-to-failure predictions at higher proof test
ratios represent extrapolations to low crack propagation rates. It is
observed that within the data range (portions of the curves in Figure 3
that lie to the left of the vertical line) all of the three fits give a
good prediction of time-to-failure. However, as the proof test ratio is
increased beyond the limits of the data we see that the three lines dev-
late from one another. The deviations can be quite large as the proof
test ratio is increased beyond the limits set by the crack propagation
data, causing a substantial uncertainty in the predicted time-to-failure.
Thus, for a proof test ratio of 3 (which is not unusually high for glass),

the predicted times-to-failure for equations (4) and (5) are approximately

4 and 50 times that predicted from equation (2) for soda-lime-silicate
glass. Similarly, for the ultra-low expansion glass, the predicted times-

to-failure are approximately 60 and 10,000 times that predicted from equation

(2). Uncertainties in lifetime predictions can be reduced substantially
by extending the crack propagation data to the lowest possible crack

velocities (as was done in the present paper). Conversely, a high value for
the low velocity limit of the crack propagation data increases the uncertainty

lifetime prediction. For the soda-lime-silicate data, for example, the

predicted times-to-failure would be approximately 10 and 1600 times larger

for equations (4) and (5) than for equation (2) if the lower limit ot the
crack velocity range were only 10 2 m/s.

Regardless of the range of the crack propagation data, safe design prac-
tices dictate a conservative approach to the use of predicted lifetimes.
To assure reliability the shortest predicted lifetime should be used for
purposes of design. Based on this criterion, it can be concluded that
for glass, equation (2) gives the most conservative prediction of life-
time under load, and is the appropriate one to use for design applica-
tions*,
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