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problems analysed in the previous paper [1]:
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ANALYTICAL DETERMINATION OF STRESS INTENSITY FACTORS OF
ECCENTRIC CRACKS BY VARIATIONAL METHOD

H. Kitagawa and H. Ishikawa*

INTRODUCTION ]

A direct application of variational methods to the analysis of a crack has

not been found, except for analysis by finite element methods. A series

of researches [l - 4] has shown that a variational method can serve as a

useful tool in the following cases: ;.

(1) Analyses of a cracked finite plate with good accuracy and rapid con- 3
vergence [1, 2]. 4

(2) Analyses of a cracked plate with complicated or unknown boundary con-
conditions, being combined with experimental stress analysis tech-
niques [3, 4].

Previously the authors proposed an analytical method for determination of
the stress intensity factors of a crack in a finite plate by a variational
method [1, 2]. In these papers an analytical solution for a crack in an
infinite plate was applied to the analysis of a crack in a finite plate. .
In the previous papers [1, 2], a rectangular plate with an edge crack was %
analysed by means of a stress function for a semi-infinite crack [5, 6]

and the principle of minimum potential energy as a variational principle;

R

accurate numerical results were obtained. However, there is a possibility F
that some reduction of accuracy might occur when the method is applied to i
such cases as internally cracked plates or mixed boundary value problems; ]

some improvements or developments of the nethod may therefore be required.

In this paper, the formulation of the variational principle is improved
and extended into a general form more convenient for the analysis of
various crack problems. To examine the accuracy of results and the
applicability of the present method, two types of rectangular plates with
an internal and eccentric crack, that is, a plate pulled by uniaxial uni-
form tension and a plate pulled by rigid clamped ends (i.e. uniform dis-
placement at the ends), are analysed. In the former case, the numerical
results are directly compared with the results obtained by a collocation
technique. The latter is analysed for the purpose of clarifying the fol-
lowing phenomenon with regard to the behaviour of an eccentric crack,
which has become of general interest and has remained unsolved. The
phenomenon is that a slightly eccentric crack in a plate grows in such a
fashion that this eccentricity is decreased. In this paper, it is found
that the phenomenon is well explained by the concept of stress intensity
factors.

By two numerical examples described above, the availability of the new
method proposed in this paper is thought to be assured.
Moreover, the new method can effectively be applied to the edge crack
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FORMULATION OF VARIATIONAL PRINCIPLE

Consider a mixed boundary value problem with prescribed boundary traction
Ti over the boundary 'y, and prescribed d?sp%acement.ui_over the boundary_
Iy. For effective application of the variational principle to thg analysis
of mixed boundary value problems, the Hellinger-Reissner formulaFlon.[7, 8]
is chosen. The functional I of the Hellinger-Reissner formulation is
given by

- 1 - -F.u,|dS-/ T.u.drl
g = fs[z 9350, 575,41)-B(o55) Fiui] frg i

= 1
- fI,uTi (u; -u, )dr 1)

where Ojj is stress; uj is displacement; B(Oij) is_;hg complemgntary
energy function expressed in terms of the stress;.Fi 1s prescribed body
force; S is the area of the cracked plate; and T is the ou;er boun@ary of
S, composed of Ty and Fys Ti is the traction force. Equation (2) is the
definition of the traction force.

T. = 0. .n, (2)
i i3]
where n; is the direction cosine of the unit normal drawn outwards on T.
The Euler equations for equation (1) are

1 - (3)
208,575 50 = S50

O.. .+F, = 0 (4)
1J,J 1

where Sijkl are the compliance coefficients. In equation (1)? 0j5, Ty and
uj can be assumed to be independent of each other. However, in t.e case
of crack problems, they have to be chosen so that the Euler equatlons.
(equations (3) and (4)) are exactly satisfied, by means of the analytical
solution which satisfies the stress free condition along the crack sur-
faces.

In this paper, the body forces Fi in equation (1) are assume@ equal tQ
Zero. Applying Gauss' theorem to equation (1) and substituting equation
(4) into it,

1 1 - T.dl+/, T.u.dl (5)
HR = EJF TiuidF— 2fFuTiuidF ffcui i Fu 1Y%

or, in matrix form,

T by oT oo
T, = /o T udl- §fru1 udl-/,

N =

u'Tar+s, 1'wr (6)
== T u

g g

where the superscript T is the transpose of a matrix or a vector. It is
noted that this modified form of the Hellinger-Reissner formulation can be
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conveniently employed for various classes of crack problems, since one can
avoid the area integral in S that includes the region of the high gradient
associated with numerical integration in such regions. Instead, it is

sufficient to carry out the line integrals on I using equation (5) or (6),
which is expected to be Comparatively simple and accurate.

PROCEDURES OF ANALYSIS

Analytical Solution for an Internally Cracked Plate

In the theory of two-dimensional isotropic elasticity, the Stresses (0%,
Oy, Txy) and the displacements (ux, Uy) are generally expressed in terms
of two analytical functions $(z) and Q(z) of the variable z = x + iy.
They are

0,*0, = 2[0(2)+(2)] 7
-ox+oy+ZiTxy = 2[(2l2)¢TZ)-¢(Z)*ﬁ(Z)] (8)
Zu(ux+iuy) e nf¢(z)dz-m(?)d?+(Z—z)¢(z) 9)

where i is the imaginary number; n = (3-v)/(1+v) for plane stress and

N = 3-4v for plane strain; u = E/2(1+V); E and v are Young's modulus and
Poisson's ratio, respectively; ( ) or ()" denotes conjugation or dif-
ferentiation, respectively, with respect to z.

When ¢(z) and §2(z) satisfy the conditions of traction free crack surfaces,
they are expressed [10, 11] as

N o N n
§O AnZ N n 20 i N n
$(z) = 222 nko B2 Rz)=E2-R__ 7 ., (10)

V 2222 oo V 2242 e

where A, and Bn are unknown complex coefficients; N is a finite integer;
2a is crack length; and the coordinates are shown in Figures 1, 2 and 3.

Moreover, ¢(z) and §¢(z) have to satisfy the conditions of single-valuedness
of the displacements, that is, the following equation has to be satisfied
for an arbitrary closed curve L around the crack.

nqus(z)dz-fLsz(Z)d? =0 (11)
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Application of Variational Principle

Rectangular plates with an eccentric crack, as shown in Figures 1, 2 and
3, are analysed. On account of the symmetry of the problem with respect
to the x-axis, the unknown complex coefficients (An and Bp) in equation

(10) have the property that A, and Bh (n = 0,1,2,...,N) are regl. From

the condition of single-valuedness of the displacements, equation (11),

the following relation between unknown coefficients is obtained.

N
= 12
A+ nél A2N M(2n) = 0 (12)
where M(2n) = (2n-1)a®M(2n-2)/(2n)
M(0) =1

Then, from equations (2), (7), (8), (9), (10),,apd (12), the traction
forces T and displacements u are given in a matrix form by

T = {Tx} = R(1 (13)
L T o
Yy
u = {ux} =U a (14)
u " “a
y
where .
T
a = [A - AB1. BN] (15)
[ 1 N N+1 2N
S B8y o8y
R =1, N N+1 2N (16)
¢ gh...g8. g o 5l
— Yy y
(01, nNpWL | 2N
X X X X (17)
u = 1 hNhN+l 2N
Ta _hy... By “eeBy

and all of gi, g?, h? and h? (m=1,2,...,2N) are the functions of z.

|[Example 1] "A rectangular plate with an eccentric crack under uniform
tension'" /

In this case, the terms including [y vanish in equation (5) or (6). )
Furthermore, only the case for which the body force F is equal to zero is
addressed. Then, substituting equations (13) and (14) into equation (5)
or (6),

1T T (19)
Tp=3% Ha-a G
1 T T
where H=>3 IF(Ra U, + U, Ra)dF
=== e (20)
G=J/p Ul Tar
G a X
O_
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From the stationary condition of equation (19) with respect to o, we have

a=Hg (1)

Then, from equation (21), all of coefficients in equation (15) are obtained.

When the coordinates are given as shown in Figures 1, 2 and 3, stress in-
tensity factors are defined by

Ky = Kpj - ik = 2420 ;Lix:[, [z-zj q)(z)] (z; = *a) (22)
j

Therefore, stress intensity factors are given by equations (21) and (22).
Figures 1 and 2 show the numerical results of dimensionless stress inten-
sity factors, Fip and Fp, at the tips A and B of the crack, respectively.
These present results by the variational method coincide with the results

[9] by a collocation technique up to three or four figures, as shown in
Table 1.

Next, to check the accuracy, the variations of Fyp and Fyg with increase
of the number of terms 2N in equation (10) are examined. Table 1 shows
a typical example for the cracked plate with e/w = 0.3 and A\ = 0.3 (see
Figure 1). The numerical convergence is quite excellent and the errors
are less than one per cent when 2N is more than 6.

[Example 2] "A rectangular plate with an eccentric crack under uniform
displacement (clamped ends)"

Also, in this case, the body forces E are assumed equal to zero. Sub-
stituting equations (13) and (14) into equation (5) or (6), we have

1T 1 _ T T
=32 Hp2~58 H 3 3 G+ 6 (23)
1 T T
where i-é—frg(f{gyg+§§)df
_ 1 T T
Hu = f'fF (Ra u_ + Ua Rq)df
.. u e GO
T — ? (24)
Gy = Jp U, Tdr
2 g =
_ T
G, = J/p R, udr
i e
J
From the stationary condition of equation (23) with respect to a,
- - -1 i
@ = (H; - H) (& G,) (25)

And then, stress intensity factors are obtained from equations (22) and
(25).
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Numerical results are shown in Figure 3. It is found that under the
appropriate condition of crack length and eccentricity of the crack, the
stress intensity factor Kig at crack tip B (with smaller distance from

the centre of this plate) can be slightly greater than the stress intensity
factor Kra at crack tip A.

The uniform displacement condition given to an asymmetrically cracked
plate causes a negative in-plane bending moment which acts so that the
crack tip A closes. An unsolved phenomenon, that a slightly eccentric
crack in a plate grows such that the eccentricity decreases, can be ex-
plained by a difference of the stress intensity factors. A similar argu-
ment can probably be applied to a double edge cracked plate with clamped
ends or a pin-loaded eccentric plate.

CONCLUDING REMARKS

Based on a variational principle, a new analytical method for determination
of the stress intensity factors of a crack in a finite plate is proposed.
By means of a modified Hellinger-Reissner formulation as presented above,
mixed boundary crack problems can be solved. The numerical results indi-
cate that by the present method an accurate evaluation of the stress
intensity factors can easily be done with rapid convergency.

A phenomenon, that a slightly eccentric crack in a plate pulled by cyclic
loads at the clamped ends grows so that the eccentricity decreases, is
well explained by the stress intensity factors obtained by the present
method.
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Table 1

Part V - 4dnalysis and Mechanics

Convergence and Comparison of Dimen
Factors of an Eccentric Crac

Tension

e/w=0.3, A=0.3

sionless Stress Intensity

k in a Square Plate under Uniform

2N FIA FIB
6 1.056 1.054
8 1.059 1.055
12 1.060 1.057
16 1.063 1.060
20 1.064 1.061
24 1.065 1.061
26 1.065 1.062
28 1.065 1.062
30 1.065 1.062
32 1.065 1.062
o BT

*reference [9]
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Figure 1 Dimensionless Stress Intensity Factor (Fgp) of the Tip (A) of
an Eccentric Crack in a Plate Under Uniform Tension

e/w=0,1

N~

Figure 2 Dimensionless Stress Intensity Factor (Fig) of the Tip (B) of
an Eccentric Crack in a Plate Under Uniform Tension
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Figure 3 Dimensionless Stress Intensity Factors (F1a and Fip) of an
Eccentric Crack in a Plate Under Uniform Displacement
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