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ANALYSIS FOR THE PROBLEM OF MISFITTING INCLUCION
AND CIRCULAR ARC CRACKS IN A SHEET

Ram Narayan*, R. K. Pandey** and B. N. Gangulix**=

INTRODUCTION

Tamate [1] combined together the inclusion and Straight crack problem and
obtained the solution of the problem in series form. An effort of com-

BASIC EQUATIONS AND STATEMENT OF PROBLEM
Let the region S be the entire plane, cut along the arc Lg(s=1, 2) of a

circle of radius R with the centre at the origin of z=x+iy=r exp(if).

The arc Ly is assumed to lie symmetrically on the x-axis and subtend an
angle 2o at the centre. By using the complex potentials ¢(z), ¥(z) which
are defined in S, we define a new function W(z) in the following manner:

W(z) = (R?*/z)-(R?*/z)$" (R*/2)- (R?/2%)P(R?/z) (1)
Whence ¥ (z) can be expressed in terms of 9(z) and W(z) as
V(z) = (Rz/zz)cb(z)—ch/zz)W(RZ/z)-(Rz/zw(z) (2)

where the bar denotes the complex conjugate.

In the absence of body forces, the stress components in polar coordinates
Or»> 99, Tpg and the displacement components U,., Ug for the elastic sheet
occupying the regions S are expressed in terms of ¢(z) and Y(z) as

0.+ = 2[6(2)+3(2)] 3)
01T g = 9(2)4 (D) -28 (2)- (F/2)T(D) 4)

2 g_e {(U +iUg)exp(ig)} = iz[k9(2)- o (2)

*297(2) + (z/2) WD) (5)
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where U is the shear modulus and k=3-4v for plane deformation, K=(3-v)/
(1+v) for generalised plane stress, v being Poisson's ratio. The subscript
following a comma stands for partial differentiation. Equations (4) and
(5) one may write as follows:

o it g = 6 (2)+W(R?/Z)+z (z/R*-1/2)¥(2) (6)

2 2o {(U, 10 exp (0} = $20k0 () WR /D)2 C/RE /DT D)

Let an infinite elastic plate, isotropic and homogeneous, occupy the afore-
mentioned regions S and be cut out by a circular hole of radius c¢ with

its centre at any point M(M may be complex). An inclusion of different
elastic material of radius (c+n), (n is of the order of displacements
admissible in elasticity theory) is supposed to be inserted and bonded to
the hole. Further it will be assumed that the stresses vanish at infinity
and the edges of the crack are free from external tractions. The crack
and the hole do not overlap.

The boundary condition of the problem can be expressed as follows:
(1) At infinity,

9(z) = 0(z7%), ¥(2) = 0(z™") (8)
whence at the origin,
W(z) = 0(1) (9
+ +

(ii) on the rims of the crack L_, 0 +iT = O
s r rb
2T ()N (D) = 0,67 (@)W (D) = o (10)

where ¢ is the coordinate of the point on the cut Lg and superscripts

+ and - refer to the boundary values of the functions as z approaches from
the inside and the outside of the arc Lg respectively.

(iii) On the common circle r=c, when origin is considered as M,

(0 *iT g) = (0,*1iT g); (11)
(Ur+1U6)_(UI‘+lU9)i = (12)
where the subscript i refers to the inclusion.

COMPLEX POTENTIALS FOR THE PLATE AND FOR THE INCLUSION

Since the equation (10) are dual homogeneous iilbert problems for two
functions $(z) and W(z), which are analytic in the entire plane cut along
Ly we can readily construct the complex potentials $(z) and W(z) for the
infinite plate which satisfy the conditions in (8 - 10) by the use of
Muskhelishvili's technique. Taking into account the fact that ¢(z) and
W(z) could have poles of various orders at z=M, we can write them as

follows:

Part V - Analysis and Mechanics

Q)(z) . © ) 1 3 © 8
W(Z)}_ _1hjzz F-j {z:ﬁ} ilﬁjzo Fj(Z-M)J
. o 1 J ) 5
uzX(z)[_Z H_ {TM} + HA(z-M)J:l (13)
i=1 j=o J

where
X(z) = [z-R exp(-ia)] ¥ [z-R exp(io)] Y2 [z+R exp(ia)] ¥
[z+R exp(-ia)] ¥? (14)
means the branch, analytic in the entire plane cut along Lg such that

X(z) + (1/z%) for |z| >~ =. Th ici .
mined. ) |z e coefficients F and Htj are to be deter-

The origin of the coordinate system is now shifted to M. The functions
{¢(z?, ¥(z)} transform to new functions {$1(z1), V1(z1)}. We drop the
suffix l.for the convenience but remember these are the potentials obtained
after shifting the origin to M. By the conditions (8) and (9), we get

F . = § Lg H_(j+s)(j > 23,
F, = - Z L Hj+s(j > o), (15)

00 oo
I LgH = o, -
s=o0 ° = (s+1) Sgl L—S Hs—l 2

where the constants L.g are known quantities determined from the relation,

[z+m-R exp(-in)] Y2 [z+M-R exp(ia)] *2[z+M+R exp(ia)] Y2

>

[ee]
[z+M+R exp(-ia)] ¥2 = } L. )
j=o 7

L ; e = - .
-(2j+1) L2j+1 G L_(2j+2) = sz, (G >0) (16)

The function ¢(z) in (13) gnd the corresponding function Y(z), obtained
frgm](T) cin be expressed in the following Laurent series in the region
C z| < R:

- ©

o) =m2 § 2,0 =2 § D, 2 a”n

)00 j=- J

o S

S L S LGNNI T oo 3 £ S N . b
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where,
C.a = o,
o0
C.=F. =+ L H j > 2),
377 SEO s s 22
I )
Co=F. + J L_H (i o),
J ¥ogLy s i-s
Dl=0

o]
ST O gyl 02 0,

5T UG, - DL G20

(18)

(19)

Thus the form of the function ¢(z) and ¥(z) are determined for the infinite
elastic sheet which satisfy the condition at infinity as well as along the

rims of the crack Ls.

The potentials $;(z) and ¥;(z) for inclusion are analytic functions for

the region |z < ¢, hence can be written as

8

5@ = [ Y 2y -
j=o J j

Il I~
wn
[
N
—
-

o

(20)

where the coefficients Yj and Sj have to be determined by the conditions

(11 - 12).

By the conditions (11) and (12), one may obtain
.5 -2 =
Co*Cy-D-2c™? = Y Y,

[(KCO-E;)—ﬁlzc-z](ui/u) = KYO—Y;+4HU1/C

“J s yEm G j-2 _ N P>
C . -(j- .c”-D. ¢ = (1=J)Y.=S. .5 (1 > 2)
_ze (6] l)CJc j- (1-3) -2 Z

>

J = = j-Z] (i 1T LT
[KC_J-C +(J—l)Cjc +Dj_2c /W) = I)YJ.+SJ-_2 J

When (21 - 23) are solved, the following expressions are obtained

134

(21)

(22)

(23)
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KU, /u+l . H./u-1 . .
= ——— ¢, - A" [iipeds ci-2
iT AT Y e [(J”)C buge D-j-z]
L 1
4ui
" ®oe 50,3’ (G > o), (24a)
S;= Gee ™ b LGuae I (s o) (24b)
j Si-4 T -j-27 =
W, /u-1 [ ; .
i Y N ] -
co= e — (- ) ! 2),
¢ ST (3-De G, #e D; 2G> 2)
8u.c KUy /=K. - furl _
D_, = EE—7H%E—tT-- ;U /M:K fl cz(C0+Co): r
i i i i
KH. /U-K. .
i 2= .
D 5= (+l)c*c - 2 1 2j+2% > 1), 25
.j-2 = Utl)c - “i/“”‘i c CJ(J > 1) J (25)

where 60 3 is Kronecker delta.

Equations (18), (19) and (25) give the following sets of infinite linear
equations of Hj and H_j:

Sgo Lg H_(s”) = o, (26a)
s H/u-1 ) Sz _
ko s Gre) T B 7T [“‘”“* )3550 G

o

v v 5 2j-2
- H - J_

§1 L Hj+5$ + Szl b g g - L L H_(jm)]c ,

S S=0
G >2), (26b)
o
Z L-s Hs—l = 2 (27a)
s=1
S 4cnuy, 0 o
J L H =- __—__———i—-+1pg ] LLH_- T L §
s=] S s Zui/u+Ki—l 555 -s s=] -S SS
Ku./u—'c.-u.—u./wl? e @
4 5 0 1 p
+1i2 J LH - J L H
2ui/u+Ki—1 =9 S5 -s s=] -S S
o0 oo
+ ) LyH -] L HS‘(, (27b)
s=o s=1
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o

Z L H, = (G+1)(1-c?) ] L H

s=1 5 s=o0 ~{3#5)
e L - 2 = 242
R T T P I oL W, te
By WPy (s=0 J s=1 J*s
G >1), (27¢)

The constants Hj and H_j are determined from the equations (26) and (27)
by assigning values to Hi/uw, ¥, Ki, o, c, R. The values of F+j are deter-
mined from (15) using the values of Ht+; determined earlier. Thus the
potentials {¢(2), Y(z)} are completely known. The coefficients Yj and Sj
are determined by (24) with the help of the values of Hij and Fij deter-
mined previously. Hence {9i(z), ¥i(z)} for inclusion is also known. The
stress field for matrix and inclusion can now be determined with the help
of (3 - 5).

STRESS INTENSITY FACTORS
By using the definition given by Sih, Paris and Erdogan [3], the stress

intensity factors at the crack-tip for the case when the inclusion and
crack are concentric can be expressed as K = (Ky1-iK2).

} R G) . 5 fu@ (N sy LT f@)
= Vst o LAY s e 1 -

j=1

w0 J )

HE+)}cos ja x cosa -
J j=1

U -SN SES W c ) DUUN QR
cos ja jzl {Hj H_j }51n jo %51n Ja],

{ R
Ka = Zsin2a[

+ ¥ {H§i)+HE§)}cos jo %sin a
j=1

@, 5 Ju@ 4N
HO jzl {Hj H—j }51n jo

—3 Hér) + ) {H}r)+HE§)} cos jo - ;

j=1

sin ja‘ cos a].

Numerical results for the stress intensity factors have been calculated
under plane deformation for the following values: a=10°, ui=u=5.60x101’
gm/cmz, Vvj=v=.339, c=(1+€), R=1.5(.25)2.5. The results are given in
table form.

A7)
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It is clear from Table 1 that stress intensity factor numerically decreases
as radius of the cracks increases.
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Table 1
R = Radius of the Symmetric Stress Skew Symmetric
Crack K, = Intensity Factor Stress Intensity
= Factor
2 =
10t xn 10'* xn
1.5 -1.00150 -0.04382
1.75 -0.79525 -0.03474
2.00 -0.65105 -0.02843
2.25 -0.54567 -0.02383
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