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A PATH INDEPENDENT INTEGRAL FOR SYMMETRIC STRESS-DIFFUSION
FIELDS SURROUNDING LINE CRACKS

E. C. Aifantis* and W. W. Gerberich**

INTRODUCTION

A careful thermomechanical analysis of crack propagation in continuous

media led Cherepanov [1] to propose an integral form as a general fracture
criterion. For slow crack growth, and in the absence of heat flux and body
forces, this integral form is identified as the J-integral. This was inde-
pendently discovered and popularized by Rice [2] as an outgrowth of the

work of Eshelby [3], for calculating the path-independent fracture toughness
of cracked metal sheets subjected to an elasto-plastic stress field. Knowles
and Sternberg [4] discovered two more path independent integrals by applying
Noether's theorem to the theory ot linear elastostatics. Aifantis [5] exten-
ded the above results to generate conservation laws for linear isotropic
stress fields in the presence of body forces derived from harmonic potentials.

The results of the present investigation may be considered as a partial
answer to the question: Do path independent integrals exist when, in addi-
tion to the stress field, a diffusion field is present?

At first glance, it appears natural to attack the problem by modelling
r microscopically the change of the energetics of the solid-matrix, due to
the motion of the diffusing species. But the uncertainty involved in
specifying the details of the elastic interaction energy, suggests a con-
tinuum mechanics treatment. Thus, diffusion effects are taken into account
by postulating the existence of an internal diffusion force which is pro-
perly introduced into the equation of motion to describe the exchange of
momentum between the solute and solvent atoms. A steady state diffusion
is considered and a simplified model for the diffusion force is adopted.
The kinematics of the diffusing species are restricted by the principles
of mass and momentum balance and their mechanical response is modelled with
a constitutive law [6] for an elastic fluid. The mechanical response of
the solid is determined within the theory of linear isotropic elastostatics.

We consider symmetric configurations for both the stress and solute density
fields surrounding the line crack. The conservation law that we discover
is independent of symmetry considerations but the path-independence is
particularly sensitive to symmetry arguments.

Thus, for the cases under consideration, we derive a path-independent
integral which includes terms due to diffusion. If we assume that the
diffusion effects are negligible at infinity, then the first component
of this integral, evaluated at infinity, is reduced to the familiar
J-integral [2].
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DIFFUSION MODELLING

We imagine a central crack in an infinite linear gla§t%c isotropic mgdium,
subjected to a symmetric tensile stress field at infinity, as shown in
Figure 1. The crack tip serves as a source of sglute atoms (e.g., disso-
ciated hydrogen ions) which diffuse in the e}astlc m?d1“W symmetrically
with respect to y-axis. The cloud of difqu}ng species is modelled to
behave as a perfect fluid obeying the mechanical principles of mass and
momentum balance. These principles, in local form, are expressed by the

differential equations [el,

30

=¥ div(pv) = 0 eD)]
and
divs + pp = V (2)
respectively.

In the field equation (1) and (2), P, ¥, v and S stand for the density, the
velocity, the acceleration and the stress tensor of the gas and y represents
the diffusive force vector.

The following simple constitutive model is adopted for the stress tensor
T and diffusion force Y:

s =-Apl ;¥ =DBY (3)

where A and B are constants, and 1 represents the unit tensor. The apove
model is a special case of a general constitutive structure proposed in

[61.
Next, we insert (3) into (2) and neglect the acceleration v in order to
conform with classical diffusion theories [8]. The result is

Qv:—-—VD. (4)

20 _ A g2 (5
T2 5 Vep »

which is the classical diffusion equation, if A/B is identified w@th the
diffusivity D. We are interested in steady-state situations and in these
cases (5) 1is reduced to

7% =0 . (e)

Part V - Analysis and Mechanics

STATIC EQUILIBRIUM OF THE SOLID

The infinite medium is modelled to behave as a linear elastic isotropic
solid, obeying the familiar constitutive law

T = A trel + 2ue (7)

where T and ¢ are the stress and strain tensors of the solid correspondingly;
A and u are the Lamé constants; and trg represents the trace of €. The
strain tensor € is defined in the usual way by

e[ '] ®

where u is the displacement vector of the solid, the symbol "T'" denotes
transposition and V is the gradient operator either for vector or scalar
fields. The strain energy, W, of the solid is also given by the familiar
relationship

W= % tr(Te) . (9)

The solid is considered to be in static equilibrium, in the presence of the
diffusive force field, -py, which acts as a body force. Thus the equili-
brium equations, in vector form, are given by

divT - ep=0. (10)

Using (3)7 and (4) we can write (10) in the form
div T + AVp = 0 . (11)

From now on we will consider the constant A to be given.

Substitution of (7) into (11) yields

’ _ A A
leE = - Vp - 20 v tre . (12)

Operating with the divergence in (12) and using a direct consequence of
compatibility [8], we obtain

(\ + 2u)V2tre = -AV?p . (13)
We are interested in steady-state diffusion processes. Then, in light of

(6), equation (13) results to

V*tre = 0 . (14)
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Another relationship that will be useful in the subsequent analysis is the
solution of (7) with respect to strain tensor €. This solution is well
known [9] and may be written as -

1 + v
E

€ = T -

m|<

gl (15)

where v and E are the Poisson's ratio and the modulus of elasticity and
0 is the trace of the stress tensor of the solid, i.e.,

og=trT. (16)

A CONSERVATION LAW

In this section, we establish a conservation law holding for any sub-region,
free from singularities, of the infinite isotropic linear elastic medium
under consideration. Towards this aim we prove the following theorem.
Theorem: 1f an isotropic linear elastic domain supports a diffusive force

field, of the form f = AVp, exerted by diffusing species of concentration
p, then the following conservation law holds:

' i
J* = ﬂ{[w + é—u(p*z*-ZT*Q* + ;—V T*Z)]n+|:2p*€+T*Vu—ulV(p*+T*)‘(VB)~'1] Q}dl =0
ST e 2 st

(17)

for every surface C that is the boundary of a finite regular closed sub-
region of the elastic domain, provided n is the unit outward normal vector
of C. 1In the case of zero diffusion, i.e., Vo = 0, it may be shown that

* = T =
$*9p=0 = gﬁVB-WE) TL‘]“ =~ (18

which is the familiar conservation law discussed in [4]. The scalar fields
o* and T* in (17) are defined by

o* = Ap H T* = X tre . (19)

Proof: For convenience we use the familiar indicial notation to define a
vector J by its components as

. = Vn. - . <3 s 2 iy
J1 31‘; (Wnl t:J uJ 1)(1 (20)

where n is the outward normal of the surface 3D that is the boundary of the
finite regular closed subregion D; and t is the traction vector defined by

t, = Tijnj . (21)
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The divergence theorem [10], the chain rule and the definitions (8), (9)
and (21) allow for successive transformations of (20), as follows:

J. = JIW, .- (Vu)TT i spdv = S L) € . .-fu .T .},.Vdv
i ) i ~7 ~1ij, 5 ) aemj mj,i m,imj)’j
- mjamj,i‘“m,iijj'“m,iij,j}d" T L Ty, 50 22)
where the identity
1 1 I 1
. . . = =T . .. = AL .= = N .. = . =
TmJEmJ,l 2 mjum,]l - 2 Tm]uj,ml 2 TmJum,Jl * 2 ijuj,ml ijum,ji
(23)
was used.
Upon substitution of (11) into (22) we obtain
J.=ASu .p, . (24)

With the aid of definition (8) and a trivial algebraic manipulation the
last equation is written, in direct notation, as

J=2A [ e Vpdv - A S (Vu)Vp dv . (25)
et D~ D~
It is convenient to introduce the definitions
Jy = J (Vu)Vp dv ; Ja = [ eVp dv . (26)
= D~ D~
Then using the easily shown identity,
div(Bqu) = (VE)VD + u div(Vp) , (27)
when the symbol '"a" denotes the dyadic, we obtain
Jy = [ div(u aVp)dv - S u VZpdv , (28)
D D~
which with the aid of (6) and the divergence theorem [10], gives

Ja

S (ua Vo)n de . (29)
v -
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The divergence theorem and the identity
div(pe) = eVp + p div € (30)

serve to write (26), in the following form

J2 = [ pendf - [ p div e dv . (31)
B/ D -

Our efforts will be directed next in transforming the second Fe?m gf the
right hand side of (31) to a surface integral. Thus, the equilibrium
equations (12) are used to write

i . Py « A i d 32
é p div € dv = - Zﬁ'é Vp“dv - o é Vip tr g)dv + o 5 tre Vo dv , (32)

which after the use of the divergence theorem is reduced to

[ o div e dv = - A J p?ndg - %— J p tre n dg + %a J tre Yp dv . (33)
D - Ll Hap -~ )
Defining a new integral
Js = [ tre Vp dv , (34)
b D~

and expressing the equilibrium equations in terms of the displacement [9]
we obtain

Jy= - B rtre vy o AU ey vere av | €353
~ A ) = ~ A D b ~

Next, we use the identity
/S tre V2u= f [tre(Vu)n - (ug V trg)g]dl 3 (36)
[ Y] o -

a proof of which is given in [S]. Thus, with the aid of the divergence

theorem again to transform the second term of the left hand side of (36)
to a surface integral, equation (35) may be written as

Js = - & S [tre(Vwn - (ua V trein]dt - 2% (erey2ap | (37)
% A Sl ~ ot e 2A =
3D 3D
Combination of (33), (34) and (37) yields
Jp divedv = - %—- s % p2+Xp tre + Aéﬁiﬁl{tre){]n + %H [trng—gthrg]g
~ u BD ~ ~ ~

(38)
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and this way the following expression for J, is derived

Jy = %- L o€ +treVu-uaVtre|n + é-pz+)\ptr€ + A—Q:El-(tre)z ng .(39)

b 2w A 2 <z b 2 z 2A 2 |5
Defining new scalar fields p* and t* as in (19) and combining (25), (26),
(29) and (39) we finally obtain

J = T j[20*e+T*Vu-uaV(p*+1*)In + i—-p*2+2p*-r* + L)y . (40)
- 5D ~ bl ~ 2u 2v ~

Also equation (20) may be written in direct notation as

J= [Wn—(Vu)TTn]dJL ) (a1)
awL~ v

The results (40) and (41) establish the validity of the conservation law.
(17), if the boundary 3D is identifying with the closed surface C.

It is easily seen from (41) that the first component of the vector J is
the well-known J-integral. Equation (40) indicates that the value of J
integral along a closed path is not zero when diffusion is considered.
The appropriate form which replaces the J-integral, in the cases under
consideration, is provided by the first component of the vector J* in
equation (17). -

It is natural to expect that the vector J* is identified to the vector
J when diffusion effects are neglected. In this case the density of the
diffusing species is uniform, i.e.,

Vo* = 0 3 p* = p*o . (42)
Under these conditions, equation (17) combined with (41) gives

- — 1 -
i =p = g+a£ (20*05 TP o*or*)gdu aé(T*Vlj uaVt*)nds +

o

S t*%ndg . (43)
4uv 50

First observe that use of the divergence theorem and (19), yields

L ey L ; ——— ]
ag (29*05 + 75 p*o + ﬁp*orf)gdl = é (Zp*od1v§+p*o o v trg) dv = 0. (44)

This is true because the integrand in (44)2 has a zero value, as it is
easily seen by combining equations (12) and (42),. Next, we use the
definition (19) ,, the identity (36) and the divergence theorem, to write
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5 1
“J (T*Vyg%*)r:dl + v
3D

S t*%ndg = A S |:(tr€)vzu + M(trs)Vtre]dv . (45)
- D ~r BT e

But the equilibrium equations (12) are expressed in terms of the displace-
ment vector in the form

Vs Pl gere = -2, (46)
m m

which when is combined with (42), and (45) results into

J (t*Vu-uVt*)nde +

S ot*%*ndf = 0 . (47)
3D 3D -

1
4uv
Then combination of (41), (43), (44) and (47) yields

T,
J* =0 [Wn-(Vu) Tn]dl =0 (48)
“Vp=0 c = =7 »n
and this way the result (18) is established.

A PATH INDEPENDENT INTEGRAL

In the case without diffusion, it is shown [2] that the first component
of vector J has the same value for any closed curve surrounding the singu-
larity. -

In the present investigation diffusion effects are introduced and we derive
results analogous to those contained in [2]. We confine attention to a

two dimensional symmetric configuration. Thus, we consider an infinite plate
loaded symmetrically under plane strain conditions (Mode I) and containing

a central crack acting as source of diffusing species symmetrically distri-
buted with respect to x-axis. The scheme under examination is shown in
Figure 1.

The objective is to show that the J* integral, defined in (17), has the
same value for all paths surrounding the line crack. Towards this aim we
consider the closed curve, C*+I"+C+T~, as indicated in Figure 1. Then
the conservation law (17) insures path independence if we show that

7 J[2p*e+T*Vu-uaV (p*+1*) ]n + i p*2e20%T% + 1 w2l pdg - o (49)
ot = ~ = ~ 2u 2v ~

Employing symmetry arguments, as well as traction free boundary condition,
we deduce the following relations hofding on the crack surface.

T =T =Txy =0 ; u,_=0 ; u _ At = -u B
XX Yy X yly =0 yly =0 (50)
ap* dp* dT* 3T*
* = = . S - - e FoEE g =
Py = 0" T 0T By Tly = 0" T T oy ly =07 G By ly -0 T T ay ly=o . #
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Then t* vanishes on the crack surface and condition (49) is equivalent to

J {[20*8~UGV(D*+T*)]H + %—-p*zn}dz =0 . (51)
rher” e = ~ <

With the aid of (15) we obtain

oo it = 2p*[—1—g-‘£3 - %mjdl = 0 (52)

I +r '+

since t and o vanish on the crack surface. If Iy is the base vector in the
y-direction then

l_*z —A_l_._.
o Em p*“ndf = ly B {

{ o*dx + J_ p*zdx} =0 (53)
I'+T r

r

since the integrand p*? has the same value as it is integrated over the
same interval in opposite directions. Also,

I [BuV(p*ﬂ*)]EdJL = +f ) g[g-V(p*ﬂ*)]dl =

+

['+T
+ [ +T (54)
A Ip*  IT* 3 op*  3T*
=1 J u [———— + ———] dx + 1 J [———- ——~} dx .
xr*_*r' X 3)’ ay yl-‘++r' Uy 3)’ ’ a)’ x
But uy = 0 on th k surf i Rel
x = e crack surface and the integrand uy 5;—-+ - has the

same value, because of the last two relations of (50), as it is integrated
over I'* and I'". Thus

JJ _ [uaV(p*+t*)]n d2 = 0 . (55)
r+r - -

The results (51), (52) and (55) establish the validity of condition (49),
and therefore the path independence of J* integral.

It has been shown that when Jy* is integrated over paths away from the
crack tip where the diffusion effects are neglected, then it has the same
value as the familiar J-integral. This furnishes approximate knowledge of
the value of Jy* for these configurations in which the J-integral has been
already evaluated. Then approximate estimates for the stress-diffusion
field in the neighbourhood of the singularity may be attempted.
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