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WEIBULL STATISTICS FOR A BIAXIAL STRENGTH TEST

D. G. Rickerby*

INTRODUCTION

It is accepted that the strength of glass is limited by the distribution
of surface flaws. Despite experimental attempts such as the use of an
ion-exchange etching technique [1,2], no direct observation of these
flaws has been possible. However, by applying the Griffith fracture cri-
terion, one can estimate the distribution of flaw sizes from the results
of fracture tests [3,4]. Reasonable estimates are obtained, but a number
of approximations have to be made regarding crack shape and orientation.

An alternative approach is the parametric description of the distribution
of fracture stresses postulated by Weibull [5]. Using this theory, a
number of workers [6,7] have generated Weibull parameters appropriate to
various glass surfaces. The test method usually employed is Hertzian
indentation, but the theory is perfectly general and may be extended to
otner loading configurations. Weibull's approach to the problem was
based on phenomenological grounds. It was later pointed out [8] that the
Weibull theory is in fact a special case of the statistical theory of
extreme values.

LXPERIMENTAL METHOD

A hydraulic testing technique [9] was adopted in the present work. A
diagram of the apparatus is shown in Figure 1. The specimen, in the form
of a 51 mm diameter glass disc, is held against a steel support ring. A
neoprene diaphragm transmits the uniform hydrostatic pressure across the
entire surface of the disc. Simple plate theory for a freely supported
cdge condition gives the following results [10] for radial and tangential
components of the stress at radius T:

2 2
o= P [erwa -5 (12)
3t? a?
= 2 2
5, - 3Pa [(3 ey - 3+ du) = ] (1b)
st? a?

where Op and Ot are the radial and tangential components of surface
stress, P is the applied pressure, a is the test arca radius and t is the
disc thickness.

Calibration of the apparatus was carried out by mcans of resistance
strain gauges mounted on the specimen surface. A comparison of these
results with theory is given in Figure 2. Stress components were meas-
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ured at 5 mm intervals across the specimen, and were found to vary lin-
early with pressure at all gauge locations. In order to allow for slight
variations in t, results are normalised by plotting ot?/P as the ordinate.
Note that r; = 23.5 mm corresponds to a, whereas r, = 25.5 mm corresponds
to the actual disc radius.

A series of fracture experiments was carried out on nominally 3 mm thick
discs of Pilkington soda-lime silicate sheet glass (E = 6.9 x lO“yPa,

v = 0.25). Specimens were tested to failure at a strain rate V10 ts71

A typical specimen is illustrated in Figure 3. Fracture has initiated
from point P, approximately 7 mm from the centre, at a central stress,
Jc = 102 MPa, corresponding to an actual fracture stress Of = 95 MPa. A
polymeric gasket was used to prevent metal and glass contact and thus
reduce edge failures due to mechanical pressure. Both central stress at
failure and location of the fracture origin were recorded for each disc

tested.

WEIBULL STATISTICAL TREATMENT
For a test specimen under the action of a uniform uniaxial tensile stress,
the probability of fracture, F, is given by:

F=1- exp (-B) (2)

B is the "risk of rupture" and is defined as:

B =fn(o) dis (3)

where dw represents an elemental solid angle and n(o) is the flaw dis-
tribution function, which takes the form:

n@) = () (4)

where o is the applied stress and Jp is a scaling factor. The quantity m
is termed the '"Weibull exponent'. A more general expression includes the
possibility of a threshold stress value, Oy, below which fracture cannot
occur. This being the case, equation (4) becomes:

g-a \"
n(o) =(——6—5> (5)

o
The "Weibull parameters' - Oy, Oo and m - completely define the failure
probability of the material under a given stress.

In order to extend the analysis to a non-uniform biaxial stress distri-
bution we require the result [5]:

| 2m + 1
ky = =27 K (6)

where k = (l/Go)m and subscript b indicates the biaxial case. The re-

ultant stress in a given direction at a point at radius r from the
centre of the disc is:
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g = (c052¢)(0r cos?y + o, sin?y) (7)

and dw = cos¢ dy d¢, where Y is the angle between the direction of 0 and
Ox and ¢ is the angle of orientation of 0 with respect to the surface
(i.e. ¢ = 0 at the surface). Initially we assume a two parametric dis-

tribution (i.e. oy = 0). Then the "risk of rupture' per unit area for
an element surrounding such a point is:
A gl
2 2 51
AB = zkbf / cos™™ vp(orcoszzp + otsm?—w)‘“dq; dy (8)
il
5 A
D

Substituting from equations (la) and (lb) we may rewrite (8) in terms of
the central stress, Oc:

m c g
o 2 71
2m+1 2 2 m
B = == (O—°)f cos m”wcp.f[ . %r—(wscoszw)] a (9)
o i a?
o - 0
2
where
_ 1 + 3v _ 1+ 3V
a—l+(————3+v)and8—l-(3—7—\)—).

For integral values of m, this expression can be evaluated exactly.
Experimentally determined values of m are generally non-integral and a
numerical method is therefore required to evaluate the integrals.

il

2
Writing C(m) = (2m + l)“/p cos'm+l¢d¢ (10)

o
and integrating over the entire specimen to find the total '"risk of

rupture'':
a
B =f AB.27r dr (11)

o
which becomes, on substituting for AB and putting r/a = x:

B = 277a2ﬂ21<0—E )fl{/
m 00

The double integral is evaluated numerically. Its value, I(m), is of
form m.D(m), so that:

ro| =

m
[1 - x¥(a + Bcoszw)] dy }xdx (12)

o=

o

¢ \m
B = 2ma? C(m) D(m)( EE>> (13)

A full three parametric Weibull distribution would be extremely compl-
icated to evalute exactly as there would be variable limits on the
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integrals which would be dependent on 0., since this determines which
areas of the specimen are below the threshold stress level. Such areas
make no contribution to B and consequently should not be included in the
integration. Clearly, as O¢ increases so does the effective area under
test. As a first approximation we rewrite equation (13) as:

m
- Zwe? %e "% ; i
B = 2ma? C(m) D(m) = (14) i

o i

This approximation implies that the threshold stress is not a constant,
but varies over the specimen with the same functional dependence as the
resultant stress component due to Op and Ot, Oy being its value at the
centre of the disc. Thus, the entire surface is included in the integra-
tion, so that the approximation improves as Oc increases and more of the
disc is actually under test. Provided that the smaller principle stress
component, Gy, is greater than oy the approximation that all areas are
under test is valid. The stress components fall off slowly with radius
over the first 15 mm, where the majority of fractures initiate, so that
for even small values of oc most of the surface is above a stress level
of o,. In addition, the error introduced by assuming Oy varies across '
the disc is small by virtue of the slowly varying nature of Op and O¢. i

Substituting (14) into (2) we obtain: !
m
9 " %
F=1- exp [- 2ma® C(m) D(m)< ——o——) (15)
o

Rearranging slightly and taking logarithms twice, this becomes:

5 B 1 2
in | = 2 'n C(nm , - - L
2n 4n T - F 2n 2ma“+2Zn C(m)+&n D(m)ﬂmln(oC ou) min 9, (16)

A plot of Zn &n 1/1 - F against &n(0¢ - Oy) yields a straight line of {
gradient m and an intercept from which 0o may be calculated since C(m)

and D(m) may be evaluated numerically once m has been determined. From a
set of experimentally obtained fracture data we obtain a series of values
of o at failure. The probability of fracture is calculated from [11]: i

F=n/ (N+1) (17) i

where n is the number of a given specimen for a total of N specimens
ranked in order of increasing strength.

In order to fit the appropriate set of Weibull parameters to the data, a
"best fit" is obtained for the experimental points to a line of the form
of equation (16). Trial values of oy are chosen until a '"'correlation
coefficient" [12] is maximised. The corresponding values of m and Og
ire defined by the slope and the intercept respectively.
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RESULTS

[he "best fit'' Weibull plot is illustrated in Figure 4, and yields the
following parameters: o, = 48 MPa, 0o = 7.1 MPa and m = 3.1. Using these
values, a curve may be computed from cquation (15) illustrating the variation
of F with o (Figure 5). This shows cxcellent agreement with the cumulative
histogram of experimental results which is superimposed on the same axes.

In addition to a distribution of fracture stresses, we have also a
distribution of fracture origins, representing additional information
available from the experimental results. In evaluating I(m) numerically
a summation must be carried out across a radius of the specimen. By
dividing the cumulative total at a given value of r by the total value of
the integral, the cumulative probability of fracture at a given disc
radius may be found. Figure 6 illustrates the theoretical prediction
together with the experimentally obtained distribution of fracture ori-
gins. The discrepancy between the two, which is greater at larger radii,
is due to the approximation made in equation (14). The result of this is
that the theory overestimates fracture probabilities in the outer region
of the disc.

CONCLUSION

The Weibull statistical theory of fracture has been extended to a biaxial
non-uniform stress distribution for the two parametric case. The three
parametric distribution cannot be easily treated analytically, but an
approximation is made so that Weibull parameters may be obtained for this
case also. These parameters are used to predict experimental distri-
butions of central stress at failure and of fracture origins. The part-
icular loading configuration described here is a desirable one since edge
failures are reduced to 10-20%, compared with laths tested in three or
four point bending which usually fail from flaws at the edge of the
specimen induced by the cutting process. It has also proved useful in
the investigation of reduced strength due to circularly symmetric,
induced surface flaws (e.g. Hertzian ring cracks, liquid impact damage)

[91.
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Figure 1 The hydraulic pressure tester
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Figure 2 Comparison of calibration data with theory

Figure 3

A typical specimen after test
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Figure 4 "Best-fit' of Weibull parameters to test data
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Figure 5 Distribution of central stresses at failure
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Figure 6 Distribution of fracture origins
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