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STRESS CONCENTRATIONS CAUSED BY GRAIN BOUNDARY SLIDING
! IN METALS UNDERGOING POWER-LAW CREEP

r

C. W. Lau and A. S. Argon*

INTRODUCTION

At elevated temperatures where crystalline metals can undergo diffusion
controlled steady state creep according to a non-linear viscosity law,
and where grain boundary sliding is encountered, fracture frequently
becomes intergranular. Such fracture frequently starts by either crack
nucleation at triple-point grain junctions or by pore formation at non-

; deformable inclusions situated at grain boundaries [1,2]. [t has long

H been recognized that this is a result of stress concentrations that arise
at triple points and at hard inclusions where the free sliding of the
boundaries are obstructed. In this paper we discuss how such stress
concentrations can be calculated in non-linearly creeping matter.

METHOD OF ANALYSIS

t Creep deformation in a polycrystalline metal combines prain boundary

i sliding with both power-law creep within the grains and ditfusional flow
of matter between grain boundaries. We will be interested here in only
the high stress range where grain boundary sliding and power law creep
dominate. In this range the basic creep equation is of the type

¢ = Ac" 1)

where & is the steady state tensile creep rate, O is the tensile stress,
n(>3) is an empirical material constant, and A incorporates a Boltzmann
factor [3]. In a more general stress state the above cxpression is taken
as a relation between the equivalent strain rate £e and the equivalent
stress Oe.

Stresses at a Triple Grain Junction

The polycrystalline metal is visualized as a network of regular hexagonal
grains. Since at steady state creep grain boundaries are assumed to
slide freely, the shear stress along any boundary is zero. Within any
grain the deformation obeys a constitutive equation for power-law creep
given by

= %— a (oe)n‘l s, . (2)
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where ©jj 15 the local strain rate tensor for steady state creep, a incor-
porates 4 Boltzmann factor, n is the exponent defined in (1) above, 0, is
the Miscs cquivalent stress, and Sij§ is the stress deviator, both defined

&

Z0.. - %—o S. . (3)
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)f interest is the stress and strain rate singularity at the triple point
‘hown in Figure 1 which also gives the boundary conditions appropriate
tor far field tensile loading. We start by first noting the correspon-
Jdence between velocities and displacements, and between strain rates and
strains, in solutions of boundary value problems with prescribed trac-
tions for non-linearly viscous materials and non-linearly hardening mat-
crials obeying constitutive equations of similar form. Our problem can
then be solved by extending the method first developed by Hutchinson [4]
to obtain the singular field of stress and strain around crack tips in
homogeneous, isotropic continua obeying a power-law hardening behaviour.

Choosing a coordinate system centred at the triple point as shown in
Figure 1, a stress function ¢(r,9) is introduced from which stresses are
obtainable in the usual manner. The governing equation for deformation
tor grains I and II can then be written by combining the equilibrium
cquation, the compatibility equation for small strain, and the non-linear
constitutive equation given by (2) (with €jj replaced by €ij). The dom-
inant solution at the triple point is of the form

o(r,8) = K& $(8) (5)

where K is a scale factor, s is an unknown exponent describing the dom-
inant singularity in stress and strain, and ¢(6) is an unknown function
of 6. Then,

5-2~

" Ty, (8) (6a)

oij(r,e)

ey (r.0) = uK“r“(s'Z)Eij(e) (6b)

nrn(s-2)+1

u, (r,8) = oK Gi(e) (6¢)

where the nondimensional Sij(e), €13(0), and u;(B) are specific funcFions
of ¢, ¢°, ¢°7, n, and s. Hence theSe 6-variations of stresses, strains
and displacements are known if s, ¢, and its derivatives are known for

4 prescribed n.

Substitution of (5) into the governing fourth order partial differential

equation transforms it into a fourth order ordinary differential eigen-
value equation. For plane strain the eigen-equation is [4]
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[(dz/dez) - n(s-2) {n(s-2J+2}Hée“'l {s(2-5)9 + ¢}]

+ 4(s-1) {n(s-2)+1} (ge“‘lg-)- =0 )
s g B [é'{5"2*2(2'5) S 907"+ (2-5) %5292} +3(1-s)25'z]hz (8)
and 0" = (d/de)

Equation (7) needs further manipulation into a form more amenable to solu-
tion. This form is highly non-linear and too complicated to present here.
In symbolic form it is

3 = g....(¢, e &.., 3 s, n, 8) (9)

Equation (9), subject to boundary conditions in Figure 1, can be solved

in grains I and II by the shooting method. First (9) is transformed into
a set of four first order ordinary differential equations which are solved
simultaneously in both grains as initial value problems. The mecthod
consists of starting with a complete set of initial conditions of both
known and guessed quantities on the horizontal boundaries, and integrating
toward the slanted boundary. There the computed values trom the two
grains will usually not agree with the prescribed conditions. The mis-
matches are then considered as functions of the guessed initial conditions
on the horizontal boundaries and are systematically climinated by repeat-
edly readjusting the guessed boundary conditions and reintegrating,
leading finally to the correct solution throughout. The numerical int-
egration was performed by a fourth order Runge-Kutta method, and a
Newton-Raphson scheme was used as a negative feedback to cfficiently
correct the guessed initial values.

Solutions of the dominant stress singularity showing the variation of s
with n (dotted curve) and the variation of Giv(e) with & for two values

of n are given in Figures 2, 5 and 6. Since the governing equation is
homogeneous in ¢ and its derivatives, the variation with @ of the stresses
plotted in Figures 5 and 6 are determinable only to within & constant
multiplier which in these figures is chosen to give ¢(0)=l. On the

other hand s which sets the singularity is completely determined.

For n=1, this problem is also solved in closed form by utilizing the
method of Williams [5]. This analytical solution for n=l serves as a
useful check on the accuracy of the numerical shooting method. For n=1
both solutions agree to at least within 5 significant figures., The
curves s=2 and s=(2n-1)/n in Figure 2 bound the region of acceptable
eigenvalues. For s>2 there is no singularity and for 3<(2n-1)/n the
displacements are unbounded at the origin.

Stresses at Inclusions Corners

Figure 3 shows a lenticular rigid inclusion with an apex half angle W
(wetting half angle) along a sliding horizontal grain boundary subjected
to uniform shear at infinity. As before, it is assumed that all boun-
daries, grain or interface, support no shear traction. The solution
technique for the singular field at the apex is similar to that of the
triple point with the added simplicity that one region now is rigid. The
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results tor the eigenvalues s (dotted curve) and the Si-(G) are presented
i Figures 4, 7 and 8 , for a wetting half angle w=m/3.” Solutions in
iipures 7 and 8 have been normalized such that ¢(8,=m-w)=1. Once again,
the solution for n=1 is also solved in closed form and compares equally
woll with the numerical results.

DESCUSSTON

I'igures 2 and 4 show that, for both the triple point and the inclusion, as
1 increases and the material becomes less strain rate sensitive the stress
.ingularity relaxes and the strain singularity increases. In the limit as
nwo and s+2 the material becomes rigid plastic, the stress singularity
ulsappgags (oij independent of r) and the strain becomes nonunique

(eijrr

For the triple point problem, Figures 5 and 6 show that: Ueg 1s compara-
tively small and constant in grain Il making it act as if it were rigid,
and that Opg is maximum at the extension of the slanted boundaries which
coincides with the incidence of folds in such locations [6]. Furthermore
jpg is maximum at 6=0 where cracks are expected to appear. For the in-
clusion problem, Figures 7 and 8 show that Jgg is maximum at the slanted
inclusion interface with the matrix, again coinciding with the position
where microcracks are expected to form.

[he amplitude K of the singularity field for both problems depends on the
particular far field boundary condition and can be obtained by a global
analysis utilizing, for example, the finite element method. Since for
small grain specimens and large n the range of the singularity is of the
order of the grain size, a good estimate of K can be obtained by equating
the integral of the singular stress distribution over a characteristic
repeat distance to that of the uniform distant traction. It is easy to
show that for the triple point problem under a far field tensile stress

g, ,K obtained in this manner is

- 9, d 2-s
K=3(s-1) -—— ['——‘] (10)
“ 866(0) 2/3

where d is the grain size, 5@6(0) the value of 886 at 6=0 shown in Fig-
ures 3 and 4, and s is given in Figure 2 for the appropriate n.

The results presented here are part of a very general study of crack

initiation at interfaces in creep which will be published elsewhere.
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Figure 1 Boundary Conditions at Triple Point Junction
Subject to Far Field Tensile Loading

s
stress ~ 1

strain ~ r

Figure 2 The Variation of s with n, [riple Point Problem
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