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POROUS RIGID-PLASTIC MATERIALS CONTAINING RIGID INCLUSIONS -
YIELD FUNCTION, PLASTIC POTENTIAL, AND VOID NUCLEATION

A. L. Gurson
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INTRODUCTION

Development of theories of ductile fracture require constitutive relations
which show details of material behaviour. Engineering materials frequently
are aggregates of several phases of widely varying properties, making

the constitutive behaviour of an aggregate more complex than that of any
of the individual phases. In this paper, the effect on constitutive be-
haviour of the presence of rigid particles, embedded in and bonded to a
rigid-plastic porous matrix, is examined. It is shown that the yield
function is altered, and that the familiar concept ot the yield function
as a plastic potential must be used more carefully. The results also

show how a void nucleation mechanism could destabilize, causing rapid

bulk softening and failure [1:3]

YIELD FUNCTION AND PLASTIC POTENTIAL

Strictly speaking, a yield function defines a locus of points in stress
space tor which a body, at a certain state of plastic detormation, will
attain plastic yield. A plastic potential is a function of stress (at
vield) which gives the direction of plastic flow via normality. [n the
conventional theory of rigid-plastic flow, the yield function ¢ is used
as a plastic potential [2]:

E= e, (1)

where 0 is the microscopic (pointwise) stress tensor, ¢ i§ the microscopic
deformation rate tensor, and A is a scalar multiplicr determined from
boundary conditions or hardening data. [t can be shown [3,4] that this
concept carries over to macroscopic measures of stress (L) and deformation
rate (E) in a wide class of porous rigid-plastic materials:

s .3 =
E = A@ [@ <oy, z, t):l, (2)

where Oy, the equivalent tensile flow stress of the matrix, is assumed
(for simplicity) to be uniform. The theory which led to equation (2)
will be extended here to include the ctfects of vold nucleation at rigid
particles embedded in the matrix. Special attention is paid to a modi-
fication of the stress-dependent nucleation criterion developed by Argon,
et al. [6].
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Consider the general case of a rigid, work hardening ductile matrix con-
tiining both voids and rigid particles, the latter debonding from the
matrix when some critical stress is reached at the particle-matrix inter-
face.  One can then write the general expression

df = df(nucl.) + df(growth) = by jaE;; + bida (3)

' is void volume fraction; d indicates an increment, and bij and bg are
ditferential coefficients. df(nucl.) is the part of df due to void
nucleation at rigid particles; df(growth) is the part of df due to void
nrowth, and is related to macroscopic plastic dilatancy. (See equation
(22)). Consider also a yield function for this material, approximated as
dependent on £, Oy, and the first two invariants of Z:

b = = 4
b @(zeqv, D o, f) 0 4)
- 1 i 3. .\

"7 3 Tkke Zij N Zij - Zﬂéij’ Zeqv “(2 Zij Zij)

(Figure 1 contains a schematic of this type of yield function; specific
cxamples were developed in references [3,4]. One is shown in equation
(I1).) It is a reasonable approximation to limit the stress dependence of
df to the first two invariants of stress also:
£ = f . . nE
= b3dA, (5)
df bld"eqv k2 bp_dZH 3

where bf, i =1, 3 are differential coefficients. For a work hardening
naterial, one may write

do
; - b4 6
doy 5~ (6)
Now, using equations (4) and (5) and applying consistency to the vield
function (commas denote partial differentiation):

. £ L f
6% = 0 = (Q’Zeqv + &, ¢b7 )dzeqv + (@,ZH + &, ¢b> )dZH .
3
+ (9,50 + &, b )dA
(OYY’A fa)

When moving along the yield function of a work hardening material, no
plstic flow takes place, so dA = 0. Equation (7) then gives the tangent
to the yield function as

£
2,5 + /p,fb2>
dz_ o < H (8)

- £
dZH <¢’Z + ¢vfb1>
eqv

tHslug the derivation of a flow rule in references [3,4], and assuming that
void nucleation affects only the rate of change of ¢ and not £ itself, it
can be shown that the plastic potential is equivalent to the yield fun-
ction with nucleation ignored. The tangent to the plastic potential is

Part II - Voids, Cavities, Forming

thus
5 b1,
B LA (9)
dZH o,5
eqv

Thus, with nucleation as a mechanism for increasing f, the yield function
is no longer strictly equivalent to a plastic potential.

In a specific form of equation (5) (developed in [3] and discussed below),

bf =0, b§ = 0 if dZH < 0, bf > 0 if dZH >0 (10)

Nucleation (the breaking of a matrix-particle bond) is considered irrevers-
ible, and cannot take place when the increment of hydrostatic stress is
negative.

In [3,4], specific forms of the yield function were developed which did
not take nucleation into account. These can be used to calculate the
derivatives in equations (8) and (9). An example is given below; it is
an upper bound yield function for a ductile matrix containing spherical
voids, with the assumptions of a fully plastic flow field in the matrix
(upper bound calculation), and uniform Ty :

Ze v2 3 ZH
Q>=—ﬂ———+2fcosh?0——l—f2=0 (11)
Gyz y

The following are true for equation (11), and are reasonable to expect
from any other forms of &:

%, ¢ >0, 9,5 > 0, and @,ZH > 0 for 2” >0 (12)
e

qv

Using equations (10) and (12) in equation (8), the slope of the yicld
function is shown to be equal to (dIy < 0) or more negative than (dxy > 0)
that of the plastic potential. Thus, given a statc of yield in stress
space, the yield surface will lie on or inside the plastic potential,

(See Figure 1.) Only the portion of the yield function for which dijp <0
can be used as a plastic potential.

NUCLEATION CRITERIA

Two specific void nucleation criteria were investigated in [5], and will
be outlined here. The first, based on the experimental work of Gurland
[5] on particle cracking in spheroidized 1.05% carbon steal, favours a
Criterion based on the strain increment. When a cracked particle is

presumed to behave like a void of equal size, and fnp is the volume
fraction of unbroken particles, the criterion is
_ . y 12
= Ccr £ dE, where £ - ( = O the 13
df (nucl.) = C3 - P By ll)) (13)

Cy i1s a material constant calculated from the experimental data; Gurland's
data gave C} = 0.29.
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the sccond criterion is based on the work of Argon et al. [6], who favour
toritical normal interfacial (matrix-particle) stress condition for

meleation. Their calculations show that for a single rigid particle,
mbedded in an infinite matrix undergoing plastic flow under pure shear
tress, the normal interfacial stress is very close to 0, in the matrix.
Note:  here, Oy is the current value, increased by work” hardening.)

fhey also study” the stress amplifying effect of a second particle in
close proximity to the first. Based on their work, the following form is
upgested [3]:
z
o, = M) o + 1 (14)
i y

1= &£

M(c) is a stress amplification factor (a function of the local particle
concentration c), and oj is the normal interfacial stress. The final
term represents, in an approximate way, the microscopic tensile stress
at the interface due to Iy. Matrix-particle separation (void nucleation)
results when Oj reaches 0;¢, the critical value. (Note: reference [7]
shows that Oy* < 0;¢ < 6 0,*, where 0,* is the initial tensile yield
stress of the matrix, is a reasonable range of values for engineering
materials.) M(c) is calculated as the ratio of upper bound values of the
interfacial stress for interacting particles with local concentration c
to the upper bound stress when no interaction takes place. Calculations
of the upper bound stresses were based on [6], as modified in [3]. (In
[3], the plastic drag (kg) at a displacement incompatibility is a work
hardening quantity; in [6], it is a material constant.) Curves of M(c)
Versus c are shown in Figure 2 for various values of n, the matrix hard-
cning exponent.

bDefine ¢* as the value of c at which 0;¢ is reached (equation (14)). A
statistical calculation is done in [6], resulting in the fraction of
randomly distributed particles which are in local concentration of c* or
more. Assuming that a separated particle behaves like a void of equal
volume, the following incremental form results (via Leibnitz's rule for
differentiation of definite integrals).

0.4412
de#; (15)

*
I+ 1
C

where I' is the Gamma function and ¢ is the volume average of c. c* de-
creases as oy, the average hardening state of the matrix, increases. (See
equation (14{ with o5 = 0i¢, and Figure 2.) Increments in Oy can be
estimated from the macroscopic behaviour of the material, the current
state, and the matrix properties:

_L..dI.. d _ o 2 12
de = A 1) do = 5:6%/&j>*d€, € = <3—€‘ : > (16)
¥

;26 s
dE 1] 1)

df (nucl.) = -

Given do > dc* can be calculated numerically from equation (14), where o
15 kept Constant at g;€:

Z:H
8, de* + M(c*) doy +d T—F (17)
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The last term above must be expanded in detail. Using the non-dimensional
macroscopic stress §) where

1%

= E/Gy (18)

the chain rule gives

( “y SH %y Oy S
N7/ a-o 9 rqalpy 4+ a-pe 49

Given enough information about a particular problem, dSy can be put in
terms of df. Then, equation (17) can be written as

= ds S
dM_ T (c*/c+l) ‘ %y H ol >< o . )
- dc*.—m.df(nutl) #, 1-f -d~f—+ 1-f df(nuul)ﬂlt(growth)

* M(e*) do = 0 (20)

doy and df(growth) are both linear functions of the flow parameter. (See
equations (1), (16), and (22).) Rearranging terms gives

= a ds S
df(nucl) o [ﬁﬂ_ [(c*/evl) Ty < . ~5_>} . (~---> dA(21)

dc* 0.4412 1-f \df -t

NUCLEATION INSTABILITY

Nucleation becomes unstable if the coefficient of df(nucl.) poes to zero.
The burst of nucleation would cause instantaneous bulk softening, which
under the proper circumstances [1,3] could lead to an unstable macro-

scopic flow field bifurcation (ductile fracture). Note that unstable
nucleation of the type suggested in equation (21) could not occur given
the flow dependent nucleation mechanism of equation (13). (A similar
type of instability, corresponding to a macroscopic non-hardening state
[1,3], could still occur.)

df(growth) can be expressed in terms of dE as follows:

3 = . = = -f) JdA 2
df (growth) (1-£) dtkk, (1-£) b’xkk | (22)

In Figure 3, this is compared to df(nucl.) over a range of matrix hardening
levels, for several values of 0i®. The instability suggested in cquation
(21) is quite evident. ¢ as used in the calculation of these curves was
derived in [3,4] for a long circular cylindrical void geometry, The form
is similar to equation (11). Note that quantities on the vertical axis

are normalized by f and c.

The effect of nucleation on the slope of the yicld function can be seen
from Figure 4, for a specific case of equation (11). Note that here,
Oic is normalized by Oy, the current state of matrix hardening. As Iy
increases, the value of M(c*) (and thus c¢*) nceded to attain nucleation
decreases, until M(c*) + 1 and nucleation takes place at all particles
not yet debonded from the matrix. df(nucl.), as calculated in equation
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(21), again becomes unstable. When this happens, bg in equation (8)
becomes infinite and the slope of the yield function becomes negative
infinite, as suggested in the figure.
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