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NECKING OF ELASTIC-PLASTIC CYLINDERS UNDER UNTAXIAL TENSION

R. N. Dubey and A. H. Elkholy*

INTRODUCTION

o M ol S

In tensile deformation of metals which exhibit a pronounced acceleration

in tensile creep, readily detectable cavities occur in the necked zone.

[t is not clear at what stage of the necking process formation of cavities
occurs, but the process itself is terminated by necking rupture. The
initiation of necking would thus appear to be the key to failure by rupture
and therefore it is necessary to understand the mechanism for the onset of
necking. An understanding of this process is also needed in the development
of models for the internal linkage of cavities.

Recent papers by Ariaratnam and Dubey [1], Dubey and Ariaratnam [2], Cheng,
Ariaratnam and Dubey [3], Miles [4], and Hutchinson and Miles [5] throw
some light on the mechanism of necking of materials whose constitutive
properties are governed by Prandtl-Reuss equations. There are other pro-
blems of practical importance, plates under biaxial tension for example,
which still need to be tackled satisfactorily.

Necking solutions for rectangular plates under uniaxial and biaxial tension
have been obtained by Dubey and Ariaratnam [6] and Miles [7]. The values
of the necking stress obtained in [6] by neglecting the incremental elastic
strain energy is found to be attainable by metals. Moreover, these values
are lower than the corresponding values at the maximum load. An exact
solution for a square plate under biaxial tension obtained in [2] yields

1 value for necking stress which is of the order of elastic moduli and
hence of no practical consequence. Miles [7] modified some of the boundary
conditions and obtained necking stress for square plates under bhiaxial
tension which is attainable for metals. He also points out (sce also [5])
that the initiation of necking can occur only after the maximum load has
been reached, I'his observation would appear to make any study of necking
useless trom a practical point of view and hence of academic interest only.

Recently, Dubey [8] has pointed out some inconsistencies in the Prandtl-
Reuss cquations, Subsequently, the constitutive properties were modified
in [9] to remove these inconsistencies. The modified constitutive relations

have been used to develop a criterion tor tniqueness in (10}, The unique-
ness criterion has been used by Elkholy [11] to obtain bifureation stress

for square plates under biaxial tension. It turns out that the first

necking stress, we shall call it the primary necking stress, is lower than the
itress Opgyx at the maximum load. In fact, in all cases examined, op,x has
been found to be an upper bound for the primary necking stress. Other

values of necking stress higher than the primary value have been observed,
some of these occur beyond o These stresses are of academic interest
only.

max-
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In this work, the uniqueness criterion of [10] is used to obtain necking
‘tress for an incompressible and isotropic elastic-plastic cylinder under
nuniaxial tension. An exact solution shows that the primary necking stress
15 lower than the stress at the maximum load.

CONSTITUTIVE PROPERTIES

Consider an incompressible elastic-plastic solid whose material behaviour
15 isotropic in both elastic and plastic deformations. Suppose that the
jolid deforms from its initial stress-free configuration By to a current
configuration B under a prescribed external loading. Let 0i; be the
components of the Cauchy stress and e§. be the associated elastic strain

. . . 1
components on fixed Cartesian coord1na%es Xy

In view of the assumed incompressibility and isotropy, the deviatoric stress,

Ji. = 0i; - (1/3) ok 8i:, where 6ij is Kronecker delta and efj are coaxial
nd propértional. Simply stated

, (1)

where 2u is the elastic shear modulus.

[f the body undergoes incremental deformation from B to a final configura-
tion B' causing, in the process, infinitesimal rotations of the principal
axes of the stress, then the principal axes of the elastic strain must also
undergo the same rotations. That is

gt . Vo= D e. e_ )
JiJ + doiJ 2 (eiJ + deij) (2)

in B'.

In other words, the elastic strain in any state must be coaxial with and
proportional to the deviatoric part of the stress causing this strain.

Let us assume that the solid obeys von Mises yield criterion

3 1/2
= ' 1 k4
c 5 Gij Oij (3)

where 0 is the yield stress in simple tension. For the plastic deformation
to occur during the motion B + B', the current stress must satisty (3) and,
in addition, the stress increment must be such that

=[RS D7 ' ' > s
do = (3/20) Oij doij 0 . (4)

[n short, the plastic flow is caused by stress ols + dui. which must be
sueh A5 to satisty both (3) and (4). For isotropic plas%ic deformation,
the plastie strain-increment deil)j must be coaxial with and proportional to

@

Part II - Voids, Cavities, Forming
+ dO{j causing the plastic flow. That is,

a?. = <o',. . dof.) A (5)
ij ij ij

wiiere dA is a constant which depends on the history of deformation and
vanishes with do. (See Appendix).

For infinitesimal incremental deformation, we can assume

de.. = de¥. + deP. . (6)
ij ij ij

Combining (2) and (5) with the help of (6), we obtain;

G! + do' . = 21 [e5. + de. . (7)
ij ij 1] 1]

where,
2u = 2u/(1 + 2udh) (8)

is the effective shear modulus.

I'inally, the stress in B' can be expressed as

= (e .
Oij + doij (1/3)(OKK+dOKK)cij + _U(Lij + de‘)) . (9)
STATEMENT OF THE PROBLEM AND RESULTS
Consider a cylindrical bar of radius a and length I. subjected to uniaxial
tension along the cylindrical axis. Let us assume that the current stress

distribution is homogeneous throughout the volume V of the body. During

the finite deformation B, to B, the cylindrical axis i% alse the principal
axes for both oy. and e§<. During the homogencous incremential deformation
trom B to B', the principal axes of oj; + do;;, ¢f, + def. and def coincide
with the cylindrical axis. We now look at the pnnaihllit} of Anutﬁur.
possibly noncoaxial, mode of deformation under the same prescribed boundary
conditions. The difference between the two modes of deformation must
satisfy the homogeneous equations of cquilibrium and boundary conditions.

(These conditions are similar to equation (7) and (4} in [3]}. The solution
tor the difference fields is obtained in a manner similar to the one used
in [3]. Here, we present the condition for the existence of a non-trivial

solution for the difference field as the condition for bifurcation of
cquilibrium as

F, = F, . (10)
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In {10y,

Fi = na [O(aa)/ll(ua) (11)

5 [0} a 2 5 5 —

Foo= —+ (1 - =92 gpa 1 (apa)/1; (apa) if 2u > o (12)
o b ©

- g g 2 ~ s =

Fors —+ (— - 1)%? gpa g (xpa)/J, (apa) if 2u <« g
an 2n ¢

p =4/ |22 (13)

Zu—ol

wvhere aa = 2ma/g. The half-wave length £ in F1 and F; need not be the
lcngth of the specimen L. J (x) and Ip(x) are the Bessel function and the
modified Bessel function of oOrder P, respectively.

The necking stress is obtained from (10) for a solid stress whose stress-
strain relationship is given by

e=§+Ac . (14)

© is the Young's modulus = 73.538 x 10 pa, A = 1.167 x 10" 75 and

B = 8.6127 are two material constants. The ratio of the increase in
traction dT required to sustain the incremental coaxial mode to the trac-
tion T in B was taken equal to 0.001, 0.005, 0.01 and 0.05 and yielded
necking stresses of 509,811 x 10° pa, 509,736 x 10° pa, 509,632 x 10° pa
ind 508,584 x 103 pa, respectively. These values of necking stresses are
first to be encountered for increasing value of the stress 0 and hence are
the Primary necking stresses for each dT/T. Each of the primary necking
vtresses are lower than the stress Omax = 509,832 x 10° pa at the maximum
load. Necking stresses higher than the above values have been observed

but are not quoted here as they are not likely to be of any practical
lmportance.

APPENDIX

Calculation of the Parameter d)\
————=—020 Of the Parameter d\

Let

dX = Cdo , o
where'the constant C depends upon the prior history of deformation and on
the yield Criterion.

Define

12
IJ) = a A p 2
e (3 deIlJj deij) (A2)

-

Part II - Voids, Cavities, Forming

Using (A2), (Al), (3), (4) and (5), we obtain

wifto

(1/¢) = 0 — . (A3)

In deriving (A3) we assumed do << g.
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