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FATIGUE CRACK GROWTH MODEL PREDICTION WITH TWO COUPLED
DIFFERENTIAL EQUATIONS

J. Pellas*, G. Baudin** and M. Robert**=*

INTRODUCTION

In the case of periodic loading, the Paris-Forman law [1] is considered as
an accurate phenomenological model for fatigue crack growth. This no longer
holds if the loading amplitude is not constant or monotonously increasing
with time. Under variable amplitude loading, many theories [2, 3] have been
proposed all based on the Wheeler model [4] which shows the influence of

the loading history by taking into account the yield zone ahead of the

crack tip: nevertheless, comparison between calculation results and experi-
mental data reveals that this model is not satisfactory. Then, it is neces-
sary to introduce another parameter in the fatigue crack propagation law
[5]: the crack propagation threshold. Finally the proposed fatigue crack
propagation law consists of two coupled differential constitutive equations
connecting crack propagation rate, stress intensity factor and loading his-
tory by means of crack propagation threshold. Calculation results are thus
in good agreement with experimental data obtained from tests on bending
specimen [6].

WHEELER'S MODEL LIMITATIONS
The Wheeler crack propagation model [4] attempts to account for the reduc-
tion which occurs in the crack growth rate after an overload by considering
two yield zones ahead of the crack tip: the current yield zone Pss and the
real yield zone Ops due to the overload.
The model is based on Paris' law for crack growth, as shown in (1):
o B8

da i ) < SS)

e ¢ of 22 (1)

dN max DAS
where:

C and n are the empirical constants of Paris' law
B is an exponent characteristic of each material.

This model has been tested, and calculation results have been compared with
experimental data obtained from tests on bending specimen. This leads to
the following conclusions :
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- Exponent B is not intrinsic: it depends on test data, which is of
course inconsistent with the existence of a constitutive law.

- This model takes into account only the loading history after the
last overload; indeed, experimental results show that retardation is a
function of a part of loading history before the overload.

- Furthermore, such a model does not incorporate the existence of
crack arrest phenomenon.

In summary, it becomes apparent that an improvement is needed to the

Wheeler model, especially to incorporate the effect of loading history. For

that purpose, we introduce another parameter in the fatigue crack growth
law: the crack propagation threshold.

NOTION OF CRACK PROPAGATION THRESHOLD

Let us consider a variable amplitude loading: at any time, we can define
the minimal load Pty below which fatigue crack growth does not occur. This

critical value is called crack propagation threshold and corresponds to a
threshold stress intensity factor K¢p by means of the relation [7, 8]

Kth = Pen ke (@)

where Kyp(a) is the stress intensity factor for-a unit load, called reduced
stress intensity factor.

Threshold Effect

To illustrate crack propagation threshold effect, let us now consider the
two following loadings (Figure 1):

- the case of a single overload Pys»

- the case of a test with two load levels Pys and Ppay with Pyg > Ppo. .

In both cases the minimal load is equal to Ppi, and Rg is defined by

For a constant Pmax’ we increase PMS and we observe that:

- in the first case, crack arrest takes place for a critical value of

Rg, R1(R) where R is defined by
pmin
RR = E—
max

- in the second case, crack arrest occurs for a critical value of
Rg, R2(R) which, for the same value of R, is different from R; (R).

Those experimental facts demonstrate:

1) the existence of crack propagation threshold, and
2) its dependence on loading history.
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Generalization

From the previous paragraph, we conclude that it is necessary to introduce
two coupled differential equations connecting crack growth rate, stress
intensity factor and crack propagation threshold.

Furthermore, we can assume that crack growth rate and crack propagation
threshold rate are functions of:

- body's geometry and crack's length through the reduced stress inten-
sity factor K.(a),

- external loads Prax and Ppin,

- loading history through the crack propagation threshold Ken (91,

- strains and stresses at crack tip through the Wheeler retardation
parameter.

Finally, the two coupled equations appear to be:

p
da _ SS
dN h(:Kmax’ X iin® Ken )

fas
(2)
Kin o  ss
dN max min th QAS
PROPOSED CRACK GROWTH MODEL
Crack Growth Rate
The first differential equation is taken as follows:
da _ _ n s &
dN ~ Co(%max Kth) K Z %l
(3)
da _ .
aN =0 if Simx = e
which leads to the following remarks:
- crack arrest is well accounted for by the factor (Kpax-Ken)s
- in the case of periodic loading, it is possible to write [6]:
da n n n
28 - - = 4
dN CO(Kmax Kth) CKmaxf (R) (6
with
K
K - _max
th R2 (R)

and analytical expression for f(R) may be written as:
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- - R2(0)*(Rp(R)-1)

0 R ®RTR D )
with

= cof R

¢, =¢ (Rz(éJ_l) . (6)

Analytical eéxpression for f(R) is in good agreement with experimental data,
and thus we can assume that mean stress influence is well represented.

- Furthermore, it is possible to show that the first constitutive
equation is independent of Wheeler's retardation parameter.

Crack Propagation Threshold

The second constitutive differential equation is more complicated. Never-
theless, several remarks must be done.

-~ Let us consider again the case of a single overload Pys:  before
this overload, crack pPropagation threshold Kt is equal to

where Knax 1s the maximum stress intensity factor corresponding to the

maximum cyclic load Pnax- R is the ratio

P .
min

P
max

When overload is applied, K¢y increases and following this single overload,
crack propagation threshold decreases very slowly and becomes equal to

K
max
Rz (R)

when memory effect has disappeared (Figure 2).

Then, we must introduce the factor

K
max
(Rz(R) th>

in the second constitutive equation in order to make crack fissuration
threshold converge to

K
max
Rz (R)

.urrhcrmo?e, the exponent of this term will be taken equal to 1: conse-
'iUUHYIY.‘!n the case of a periodic loading, the variation of the crack
Propagation threshold AKth for one cycle will be of the same order of
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magnitude than the variation of the Stress intensity factor AKpayx for one
cycle. Finally, the sign of the expression

K
max - K
(Rz ®) th)

will provide the sign of the variation

thh

dN

- In the case of a single overload, we notice that crack propagation
threshold variation is more important when load increases than when load
decreases. So, we introduce the Wheeler's retardation parameter in the
second constitutive equation.

In summary, the second constitutive differential equation may be taken as
follows:

3§

dK K 0

__th _ a(R) - {max_ _  ).[_SS 7
dN Ry (R) th Pas

Note that & is an exponent characteristic of material. 2 (R) is a function
of the ratio
Kmin
R = i
K
max

and depends on Ry (R) and R, (R).

APPLICATIONS

Theoretical results obtained through this model have been compared with
experimental data recorded from tests on bending specimen. As a preliminary
it has been shown that bending tests were well representative of crack
growth under cyclic loading: Paris' law determined from tensile tests on
cracked plates gave good results when applied to bending tests.

Calculation results are in good agreement with experimental ones for many
cases: a single overload (Figures 3 and 4), two levels loading (Figure 5),
ete.

All the results are reported on Figure 6.
CONCLUSIONS

Calculation results are in good agreement with experimental data. Note that
only the case of a constant minimal load has been considered. Work is being
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Figure 1 Threshold Effect
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K, (MPay/m ) Prag= 10 daN

Pus = 20daN
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Figure 2 Crack Propagation Threshold Evolution After a Single Overload
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Figure 3 Tests with a Single Overload (%min = ?)
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a(103m)
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Figure 6
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Lomparison Between Calculations and Experiments
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