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CRACK PROPAGATION IN A TWO-PHASE MATERIAL SUCH
AS CONCRETE

J. W. Zaitsev* and F. H. Wittmann**

INTRODUCTION

[n recent papers crack propagation in porous viscoelastic materials has
been studied in detail [1, 2]. Experimental results obtained by testing
various porous building materials have been compared with theoretical
predictions and have been published in a comprehensive report [3]. Ina
similar way crack propagation in materials under multiaxial state of
stress has been treated [4]. In this approach the material has been
assumed to be isotropic and homogeneous. Therefore the interaction of
cracks with aggregates in a two-phase material such as concrete could not
be treated specifically. Nevertheless it was possible to describe the
behaviour of concrete under high sustained load by introducing simplifying
assumptions on a rather phenomenological basis.

Several authors were able to prove that a considerable number of cracks
can be observed in unloaded concrete specimens [5 - 8]. These shrinkage
induced cracks are frequently located in the interface between hardening
cement paste and aggregate. If an external load is applied the a-priori-
cracks begin to grow. Up to about 85% of the ultimate load crack length
increases to a comparatively small degree and cracks remain mostly inter-
facial |9]. At 95% of the ultimate load, however, cracking is no longer
restricted to interfaces. Previous interfacial cracks extend into the
surrounding mortar matrix. These spreading crack extensions have a ten-
dency to direct themselves close to the direction of the externally applied
load.

In this paper an attempt to simulate the experimentally determined crack
growth in concrete is described by means of a computer programme (Monte
Carlo-method). The theoretical background of this complex stress analysis
will be described in detail elsewhere [10]. The actual structure of con-
crete is replaced by a two-dimensional model. Aggregates having poly-
gonial shape are randomly distributed in a homogeneous matrix. The size
distribution and the volume content of the aggregate particles can be
varied in order to simulate different mix proportions. Interfacial stres-
ses may be estimated by using formulae described in [11, 12].

BRANCHING CRACKS IN HOMOGENEOUS MATERIAL

We will start with the discussion of the simplest case of branching cracks,
i.e. a randomly inclined crack in a homogeneous plate and loaded at in-
finity. Brace and Bombolakis [13] as well as loek [14] have studied the
development of branching cracks. They showed that branching cracks become
aligned with the axis of the major compressive stress. It is most impor-
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tant to note that branching cracks do not propagate catastrophically but
they form gradually as the external load is increased. If several randomly
inclined cracks are in one specimen branching cracks develop from cracks
with differing inclination as the load is increased.

In Figure 1 an initial crack having a length of 21; and an inclination of
% with respect to the direction of the external compressive load q is
shown.,

This crack might propagate as shear crack i.e. failure type II. In our
cxample, however, at the end of the initial crack, two cracks of failure
type I are created before the shear crack becomes critical. By introducing
simplifying assumptions [10] the crack length 1, can be expressed as
follows:

| Q K-1
— = K+l KIC (1)
Vrl, YTlo

In this equation P and Q are the x and y components of shear stress T

(see Figure 1) created by friction which may be represented by a coeffi-
cient p:

P =T sin o + -2ql1,A(a,p) (2)

and

Q=T cos a = -2ql;B(a,p) (3)
A and B have the following meaning:
A(a,p) = sin®a cosa - psin’a (4)
B(a,p) = sin a cos?a - psina cosa (5)

while T can be expressed in the following way:

T=21, - TF¢ = 2 1; q(sina cosa - psin?a) (6)

>

If 0,2 is used as a characteristic value of the Poisson ratio of concrete
|3], we find k to be 7/3 and hence (k-1)/(k+1) to be 2/5. Then equation
(1) can be rewritten:

{P*‘éQ}//’IT_l_z:KIC (7
By inserting equations (2) to (5) in equation (7) we find:
1, KIC/E7TT
<1=\/:—:m)— (8)
In equation (8) C; has the following meaning:

C1(9,0) = A(%,0) + 3 B (2,0) (9)
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Equation (8) indicates the length of the branching cracks 1, as a function
of the external load q and the geometrical arrangement.

BRANCHING CRACKS FROM INTERFACIAL CRACKS

Now we consider a homogeneous matrix with one polygonial inclusions, re-
presenting an aggregate. An initial interfacial crack with length 2 1,

is assumed to be located along one side AB (see Figure 2). This problem
can be treated in a similar way as was shown with the example of the be-
haviour of an inclined crack in a homogeneous material in the previous
section. In the interface stress concentrations perpendicular and parallel
to the crack surface have to be taken into consideration. This can be done
by introducing coefficients of stress concentration kg and k;. It can be
shown that the initial crack spreads (Type II) as soon as the critical

load qf? is reached

IF
K
IF 1IC
—_— 9)

£5 0 Si—

vnll'DIF(a,p)

Index IF denotes that critical values of the interface have to be used and
Dip has the following meaning:

= i - in?
DIF(a,p) kr sina cosa kop sin“a (10)

This shear crack develops in an unstable manner until it reaches the length
2L, (see Figure 2b). In this situation further crack growth is stopped.
Lf the external load is increased another critical value qy is reached:

il /372

M - IC

rf1,=0, ~ ° (11)
P /LD p(a,0)

Here index M denotes that under these conditions cracks run through the
matrix. The actual crack length in the matrix can be given as a function
of load in analogy to equation (8):

M
Vﬂlz KM
q = - _—IC“ (12)
ELI ClIFLa’U)

where

(211}

LlIF(a,p) = DIFLQ,Q) sina + DIF(u,p) cosa (13)

According to equation (12) crack length is steadily increased as the load
increases. 1z in equation (12) corresponds to the distance AA' as shown
in Figure 2c.
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CRACKS INTERFERING WITH AGGREGATES

In Figure 3a the situation shown in Figurg 2c is repeated. But in the‘
present problem it is assumed that branching crack AA' meets a seqond in-
clusion as it propagates (Figure 3b). Further crack growth will follow
the interface MN. In principle this interfacial crack growth may occur
according to type 1 or to type II. The respective critical loads are

given by:
2 KH‘: vily / Ly
Gp = = ILB 38 B 387 (14)
I . 5 a ] > B 9B
QIIFLu,p) [a uObz‘*LOSg—]—DCZIF(u,p)[leZ +sing ]
2 k\l} Y/Tle / L
1IC =
drp 7T g 58 B 38 (18)
CIIF(u,o)[SlnE-+51n5—]+L21F(a,p)[cosE-+acosz ]
In equations (14) and (15) C,p has the following meaning:
>
C;IF(u’p) =5 DIF(a,p) sina + DIFLa,p) cosa (16)

Once a crack has reached a second inclusion further crgck grow;h depends
both on the geometry of the crack path A'ABB' and the inclination of the
interface MN. Whether crack propagation according to type I or to type II
is to become critical depends on the sign of B and i; }ndlcated by equa-
tions (14) and (15). Shear cracks (type II) are facilitated by an external
joad. In contrast the component of q perpendicular to the plane MN makes
the formation of opening cracks (type I) less likely. As aAconsequence

in a material with randomly distributed inclusions cracks will propagate
with high probability as indicated in Figure 3c.

SIMULATION OF CRACK PROPAGATION IN CONCRETE

In the preceding sections all essential elements to describe crack.prop—
agation in a two-phase material have been described. Now we can 51mulatg
the structure of concrete using Monte Carlo-method. A typ1§al gxumplg ot
one computer realization is snown in Figure d4a. 30 polygonial 1nc}u51ops
nave been randomly distributed in the matrix. Each aggregate pa;tlcle is
supposed to have one initia} interfacial crack (mayked with a thick bar in
Figure 4). As the load is increased up to a certain level'someﬂcracks be-
come critical and propagate in an unstable way within the }ntertacc and
then as the load is further increased in a stable manner Fnrough the
matrix. Three different levels of loading are shown in Fxggres 4b - d.

A gradual increase of the mean crack length is observed. Finally a com-
posite crack runs with slight overall inclination through the specimen

and causes macroscopic failure. Inclined cracks have been experlqcntally
Jetermined in compressed concrete specimens (see f.e. [}5]). Asntar as

we know the theoretical background of this characteristics bghgv1ou{ has
been outlined for the first time in this contribution. Qondltlons for

the formation of inclined cracks are formulated by equations (14) and (15).
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A new and basic approach to simulate crack propagation in concrete has

been described. In Figure 4 normal concrete has been chosen as an example.
In lightweight concrete and in high strength concrete cracks may penetrate
through aggregate particles [16]. The behaviour of concrete under high
sustained load as well as under impact load can also be studied in this
way. Simulated crack patterns agree reasonably well with experimental
findings. Therefore it seems that a solid basis for further investigations
has been provided.
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Figure 1 Schematic Representation of the Development of Branching Cracks
and Definitions of Symbols Used in Equations (1) to (9)
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Figure 2 An Initial Crack with Figure 3 (a) A Crack Path as Shown in

Length 21j(a) Grows in Figure 2c, (b) Meets a Second
an Unstable Manner Along Inclusion, (c) Finally a Shear
an Interface AB (b) and Crack in the Interface MN will
Finally Stable Branching Occur

Cracks AA' and BB' are

Created as the Load is

Increased
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(a) Computer Simulation of the Structure of Concrete
(b) and (c) Crack Growth of Initial Interfacial Cracks as the

Load is Increased

(d) Finally Failure Occurs as a Slightly Inclined Crack Runs
Through the Specimen
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