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ANALYSIS OF BRANCHED CRACKS UNDER BIAXIAL STRESSES

H. Kitagawa and R. Yuuki*
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INTRODUCTION

Branched cracks are often observed in brittle fracture and also in stress

corrosion cracking. The reasons for these crack branching phenomena in

brittle fracture have been explained on the basis of dynamic effects [1].

However, there are many characteristics common to both crack branching

behaviour in brittle fracture and in stress corrosion cracking. In order

to discuss these phenomena, it seems important to analyse the static ]
stress intensity factors for the branched crack model. However, few
solutions for such a crack have been obtained. In another report, a
general method analysing some kinds of the branched cracks was form-
ulated using a conformal mapping function. The numerical values of stress
intensity factors for a branched crack under uniaxial stress were reported
in references [2 - 5].

e

In this paper, taking into consideration that most engineering structures
are often subjected to biaxial loading, the numerical solutions for the
stress intensity factors of some kinds of branched cracks under biaxial
stress are presented. Moreover, using the results obtained, crack ex-
tension behaviour under biaxial stresses is discussed.

ANALYSIS

Conformal mapping functions have been applied to the analyses of crack

problems by Muskhelishvili [6], Bowie [7] and others. Muskhelishvili and %
Savin [8] analysed various shaped holes with the method of polynomial
mapping approximation. Bowie applied this method to the analysis of a
crack emanating from a circular hole. We applied this method, with i
various improvements, to the analysis of a branched crack.

In the analysis of a branched crack, due to the complicated crack geo-
metry, the polynomial approximation of the mapping function does not con-
verge easily. Moreoever, the first and second mode stress intensity i

factors coexist and the crack has dual crack tips at which the stress 5
intensity factors are different. This increases the difficulties of the
analysis.

The authors have overcome these difficulties and were able to develop a
general method of analysis of branched cracks. In other papers [2 - 5],

we analysed a branched crack with one or two branches on one side of the
main crack in a uniaxial stress field, utilizing the mapping functions
which were used by Andersson [9]. In this paper, we analyse a doubly
symmetric branched crack, utilizing the mapping function introduced by

the Schwartz-Christoffel transformation with several devices in calculation.
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As a result of the high symmetry of the crack geometry, we obtained more
accurate solutions than the solutions of the forked crack obtained in
another paper. The outline of our method is described below.

Mapping Function

A doubly symmetric branched crack as shown in Figure 1 is considered. A
conformal mapping function which maps the crack into a unit circle is
given by a Schwartz-Christoffel transformation. As a result of the sym-
metry, the conformal mapping function is given by equation (1).
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Where the parameters o, B correspond to the branching points and the crack
tips respectively as shown in Figure 1 and A is a real constant. The
mapping function w(g) must be expanded in a series, because of the deter-
mination of the parameters O, B8 and the stress function as stated in the
next section. The function H(Z) in equation (1) can be expanded in a
binomial series as shown in equation (3).

HE) = 1+ £ hy g (3)

Substituting equation (3) into equation (1) and integrating equation (1,
we get the following equation:
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w@y = Ale 58 ] @)

For practical reasons the number of terms in equation (4) must be kept
finite. If the terms of the polynomial mapping function are truncatgd at
a finite number, the tip of the crack is rounded off. In the analysis of
crack problems, the truncation of terms needs some devices to preserve the
crack tip geometry without disturbing the overall crack configuration.
Referring to Bowie's truncation plan [8], the polynomial mapping function
w(g) of equation (4) is truncated at a finite term to satisfy the fol-
lowing conditions at the crack tips.

st =0, wet)-a 5)
Where Q is the exact second derivative of the mapping function of equation
(1) at the crack tip and is given by equations (6) and (7).
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To satisfy the above conditions, we add the two correction coefficients
to the function w(g) which is expanded in series and truncated at the Nth
term. Thus we obtain the following mapping function.

N+2
_ 1-2n
w(e) = A[F * n§1 Bﬁ & ]

(8)

Next, the parameters o and B must be determined. The parameters follow
the relations.

0<B<ac<m/2 9
For a given value of B8:

ia i(m-a)

Z =w(g) =0, one  <g<e (10)

The value of a for a given value of B is numerically determined to satisfy
the above relation. Thus we obtain the mapping function and its poly-
nomial approximation for the doubly symmetric branched crack.

Stress Function and Stress Intensity Factors

The Muskhelishvili complex stress functions $(2), v(g) are used in our
analysis. Taking the polynomial mapping function w(z) obtained by equa-
tion (8) into consideration, the stress functions can be defined as
follows, when the crack is subjected to uniform uniaxial tension O in the
direction ¢o as shown in Figure 2.

N+2
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Where dn and fp are the coefficients of the stress functions and they have
to be determined so that the stress-free condition is satisfied on the
crack edge. This condition is given by equation (13).

F(1/0) + ©(1/2)' (©)/w' () + v(E) =0, on |g| =1 (13)

Substituting equations (11), (12) and (8) into equation (13), and equating
the coefficients of all positive powers of ¢ to zero, a set of linear
simultaneous equations with respect to the unknown coefficient dp can be
given. Solving these equations, the stress function ¢(z) to satisfy the
boundary conditions is obtained. By means of the function ¢(g) obtained
above and equations (6) and (7), the stress intensity factors of the
branched crack can be calculated by the following equation.

w4 1B
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Where 0 is the branching angle as shown in Figure 1. The value of the
stress intensity factors for the branched crack under given biaxial
stresses can be obtained by the summation of these kinds of solutions.

NUMERICAL RESULTS

Doubly Symmetric Branched Crack

By means of the method mentioned above, the values of the stress intensity
factors of the branched crack were calculated. The accuracy is within 1%.
They are normalized by the stress intensity factors of the straight crack
length 2c as shown in Figure 3. Figure 3 shows the non-dimensional stress
intensity factors (Fj, Fz) of the branched crack, subjected to uniform
tension along the y axis and Figure 4 along the x axis, respectively. The
solutions for the branched crack under arbitrary biaxial stresses can be
calculated by simply superimposing the solutions for the cracks under uni-
axial stress. Figure 5 shows the stress intensity factors of the branched
crack for b/a = 0.1 under various biaxial stresses. A\ is the ratio of the
tensile stress in the x direction to that in the y direction.

It is well known that in brittle fracture or in stress corrosion cracking,
crack branching has often been observed. In such a fracture process, the
stable crack branching angle can be considered. Figure 5 shows that for
various values of A, the F» (or K2) value changes sign and becomes zero

at a chracteristic branching angle. A branched crack with such a branching
angle will grow along the extension line of the branch. If we take a
criterion such that each branch can grow only in the direction F, (or K2)

= 0 [3], the stable branching angles 26 for the various value of XA are
determined by Figure 5. They are about 25°, 33°, 41°, 52° for ) = -1, 0
0.5, 1, respectively. Thus the branching angle increases with increases
of the value of A. For the case of uniaxial stress (A = 0), it is well
known that the average macro branching angle observed in experiments is
almost 30° - 40°. In this discussion, the results for b/a = 0.1 are used.
If the b/a value increases, the branching angle decreases slightly. This
corresponds to the phenomenon that the branched crack changes direction
with the growth of the branches. We can obtain stable branching angles
under various biaxial stress states. If a branched crack is observed in

a structure, it is possible to infer the stress state to which the branched
crack was subjected using these results.

>

Bent Crack

We also analysed a bent crack, as shown in Figure 6, as a limiting kind of
branched crack. In this case, the mapping function and the method of
analysis are slightly different from those mentioned above. They have
been reported in reference [2]. This bent-crack crack-model is very use-
ful when the extension direction of a crack under a mixed mode stress
state is discussed [11]. Several authors have tried to analyse the same
crack model as used here [12 - 13]. Only numerical results are presented
here in order to discuss crack extension behaviour under biaxial stresses.
Figure 6 shows the stress intensity factors at the tip of the bent crack
with a branch (b/a = 0.1) subjected to various biaxial stress states. It
is a very difficult problem to consider the stability of crack extension.
However, if the model of the bent crack can be used and the stress inten-
sity factors of this crack are known, it seems that the stability of crack
extension can be supposed to some extent. We can deduce that for the

case of A = 0, -1, the crack is very stable because the nondimensional
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stress intensity factors at the bent crack tip Fyp, Fopg vary rapidly at
the vicinity of the point A = 0. This means that a small deviation in
the direction of crack extension from the original direction induces a
rapid return to the original direction. On the other hand, for the case
of A = 2, the crack seems to be unstable and cannot grow in a straight
line. Figure 7 shows the directions of crack extension from the tip of

a bent crack which are calculated by the theory of maximum circumferential
stress proposed by Sih, et al. [10]. For the case of A\ = 0, -1, if the
crack is bent for some reason, it will be bent again towards the direction
of the extension line of the initial crack. On the other hand, for the
case of A = 2, the crack grows in the direction of the extension line of
the bent branch. Thus the crack has different stability for each biaxial
stress state. We suppose that this affects the crack path and crack
growth law found in biaxial fatigue tests.

SUMMARY

We constructed a general method for analysis of a branched crack in a
given biaxial stress state by means of a conformal mapping function and
its series expansion. The calculated values of stress intensity factor
of a doubly symmetric branched crack and a bent crack under various bi-
axial stresses are presented. On the basis of these results, the crack
extension behaviour under biaxial stresses is discussed from our crack
morphological view-point. Some of the interesting points are as follows:
1) In a fracture process such that a symmetric branched crack can grow,
there is a stable branching angle particular to a given biaxial stress
state, which increases with increase of the lateral biaxial tensile
stress.
2) Using the solutions for the bent crack, we discussed the stability of
the crack under various biaxial stresses. The crack has a particular
stability, which may affect a crack extension behaviour.
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Figure 1 Crack geometry in Z-plane and mapped in mapped ¢-plane
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Figure 2 The doubly symmetric branched crack subjected to uniform
uniaxial tension
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Figure 3 The stress intensity factors of the doubly symmetric
branched crack subjected to uniaxial tension in the
y-axial direction
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Figure 4 The stress intensity factors of the doubly symmetric
branched crack subjected to uniaxial tension in the

x-axial direction
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Figure 5 The stress intensity factors of the doubly symmetric
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Figure 6 The stress intensity factors of a bent crack for
b/a=0.1 subjected to a biaxial stress state
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