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AN APPROXIMATE THREE-DIMENSIONAL STATE OF STRESS
IN THE VICINITY OF A CRACK

Yu Chen*

INTRODUCTION

The classical linear fracture mechanics solutions of the crack-tip stresses
are based on two-dimensional formulation of the stress field under either
plane stress or plane strain conditions. For contained plasticity the
slip-line field is not enough for predicting the plastic zone size. Besides
numerical treatment, several papers presented asymptotic analysis of the
stress singularity at the crack tip [1, 2, 3]. Three-dimensional solutions
are difficult and not available at the present time. The object of this
paper is to study the effect of the plate thickness on the stress distribu-
tion in the plastic zone of a through crack with the assumption of an
ideally plastic material.

MATHEMATICAL ANALYSIS
Consider the stress function defined by

1
F=> 2£(0) . 1)

The stress components defined by equation (1) are [4]

_103F 1 3% _ I
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“ro =~ 3139 (?)‘ -~z B

If one specifies that the octahedral shearing stress T defined by [4]

9T,% = (01-02)% + (02-03)2 + (33-0))? (3)

to be constant, one will get the classical solution of the plastic stress
field at the crack tip. In the above expression 0y, 0, O3 are principal.

To construct an approximate solution in three dimensions let us assume a
set of two Maxwell function [5]
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X=Y=yH and Z = ¢F (4)

where H and F are functions of x and y only, ¢ and ¢ are functions of x,

y and z except that these functions vary so slowly with x and y that their
derivatives with respect to x and y can be ignored. The resulting stress
components are given by the following:

= 7 = Y

O = ¢F .+ U, fop = <0 B,
T ' = i

O = OF v WUH, T = Yt H (%)
= 2 = =

o, = WWH , Ty = 0 Fy

where the subscripts represent partial differentiation and the primes
denote differentiations with respect to z.

[f we further introduce the assumption that the functions F and H are
identical, then the above stress components will be reduced to four re-
maining components; namely,

ox = ¢ Ox 5 Jy = ¢ oy §
_ (6)
o, = ¥E, +3) , oy = T
where 6 =F , G =F , o _ = -F . (7
X Yy y XX Xy xy

[t is important to note that the above set of stresses do not satisfy
the equations of equilibrium exactly, but the quantities neglected will be
small by assumption.

The task now is to suggest a function F that will yield a fan-shaped plas-
tic region in the xy-plane. In this region the octahedral stress To will
be constant. This function F can be taken to be the same classical solu-
tion that solves the plane-strain case in the region 0 < |8] < 7/4 and a
new solution outside the region. (See Figure). - -

Thus, for 0 < [6] < T,

£(0) = 24 - Réﬂ cos 20 (8)
and for 0 < |a g_é%; (o = m-8)
f(a)=R¥—%cosz—§+&iRcos 20 9)

where p and q are the stresses at 6 = 0.

It can be verified that these solutions satisfy all the boundary conditions
and at 8 = m/4 all the stress conditions are matched.
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By using equation (6) we can calculate T, as

. - - 3
9" = (01-02)" 4 (02-03)% ¢ (95-01)7 = T (-2WGE T2 ¢ 92V (o)
where V is defined by
==, = 2
vV = (oX 0y) + 4 Txy P (11)
For the case of plane strain $ = 2y, we have
2 _ 3 42 = 12
9t 5 6%V v =1), (12)
and for plane stress, § = 0, thus
2 2 =2 . TF = 2 = 2
9TO = 2¢ (ox chy + oy * 3Txy Y s (13)

If we denote the value of ¢ at z = 0 by 6y and that at z = + ¢ by ¢g and
equate the two Ty values, we obtain from equations (12) and (13) the ratio
of the two ¢-values as

¢m ’ 4 p/q
<§) - ?[1 * (1-p/q)2] ae

The ¢-function is further restricted by

c
J ¢ dz = 2¢ (15)
-c

The Y-variation can also be estimated based on the condition To being
constant. The more specific form of ¢ and ¥ can be suggested based on
experimental results available in the literature, but will not be the sub-
ject of this paper.

CONCLUSION

An approximate three-dimensional solution of the state of stress in the
vicinity of a crack has been suggested. Although these stresses do not
satisfy the equilibrium equations exactly, the error is expected to be
small for moderately thick plate. Variations of the stresses in the
thickness are defined by two functions which can be estimated.
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Plate with Finite Thickness with Crack Under Tension
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