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A TRANSIENT FINITE ELEMENT ANALYSIS OF
UNSTABLE CRACK PROPAGATION IN SCME 2-DIMENSIONAL GEOMETRIES

P. N. R. Keegstra*, J. L. Head** and C. E. Turner***

INTRODUCTION

Analytical solutions have been obtained to the problem of unstable crack
propagation in an infinite plate by Freund [1] and in an infinite strip
by Nilsson et al [2, 3, 4]. An extensive review of this work has been
presented by Erdogan [5]. Recently, interest has extended to the problem
of the analysis of crack propagation and arrest in finite geometries.
There is interest in the analysis for standard 2-dimensional test piece
geometries for which dynamic toughness data are known with some confidence.
Also, there is interest in the modelling of crack propagation in real
components, having more complex 2-dimensional, or, eventually, 3-dimens-
ional geometries and for which the relevent toughness data are known.
This paper describes, in outline, a 2-dimensional dynamic linear elastic
finite element programme, based on triangular linear displacement plane
strain elements, suitable for either purpose. Applications described
here are restricted to test piece geometries.

It was thought convenient to use double cantilever beam (DCB) geometries,
under fixed grip loading conditions, for the validation of the programme.
For this geometry, there is a large volume of experimental data, assembled
by Hahn et al [6, 7, 8]. The present paper gives the results of analyses
for DCB geometry and a comparison with the published experimental results
of Hahn et al. The paper also describes the application of the programme
to finite strip geometries, also under fixed grip conditions. In con-
ventional tests on metals, the problem is circuitous. Without a dynamic
analysis of the test piece, the dynamic toughness (which is, in general,

a function of crack speed) cannot be derived. On the other hand, the
programme can be run only if the dynamic toughness data are input. The
dynamic toughness can be measured however, without the use of a dynamic
stress analysis, by the thermal wave technique [9], dynamic photoelasticity
[10] or the shadow optical method [11].

The dynamic energy release rate, Gp, in a specimen under fixed-grip con-
ditions, is [5]

o fw, as
Gp = - (da * da) (1)

where S = kinetic energy
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(other symbols conform to the standard nomenclature list.) 1In the analyses
described in the paper, it was assumed that energy is dissipated only at
the crack front, There may be damping losses, either internally and/or
at.bogndaries. The inclusion of these losses in the analysis would, in
prlnglple, Present no difficulty, although the assessment of a reasonable
magnitude would not be easy. The nature of energy dissipation at the

cra;k front is not discussed in the paper, but dissipation is, by impli-
cat}on, taken into account by use of a generalised surface energy of the
Frw1n—0rowan type. The method by which this is included in the analysis

1s described in the bpaper. The energy balance equation is then

Gp = R(v) 2)

where R(v) = dynamic fracture toughness, which in general
is a function of the crack speed v,

DYNAMIC ANALYSIS

The finite element discretisation of a continuum leads to the well-known
matrix form of the equation of motion [12].
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and the dot indicates the derivative with respect to time. 1In the analyses
described in the baper, the mass of each element was assumed to be con-
centrated at the nodes, thus diagonalising the mass matrix and reducing
the-computing time by up to 80% with an acceptable loss of accuracy

(gbqut 4%). Equation (3) is integrated stepwise in time in a manner

time points, thus the displacements and velocities at time t + A are

E?i?§ed to those at t and t - A by theé following equation (see Keegstra

\
S AR saZ g2 5
L) [Larfu W 154 & (3—
= + )
. _A 24 54
218 Ljja, iz L FI|{i,
u
2

The subscripts *+,0,- denote the values at times t + Ay €5 € =« A respec-
tively. 1 dengtes unit matrix and A is the time interval. The predicted
accelerations U , are used with equation (4) to obtain a first estimate
of the velocities EA+ and displacements u ., which are then substituted
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into equation (3) to obtain improved values of the accelerations g ++ The
iteration is continued until adequate convergence is obtained. The solu-
tion is then advanced by a further time step. The length of the time step
is taken to be

A < s/s5C) (5)

where S = smallest finite element side length
CL speed of dilatational wave

I}

CRACK EXTENSION CRITERION

At the present stage of the development of the programme, the crack path
must be known. In DCB and strip geometries, the crack path may reasonably
be assumed to be the plane of symmetry and only one half of the specimen

is modelled. Figure 1 shows the DCB geometry for which the present analyses
were made. The finite element mesh comprised 250 elements and 157 nodes.
Nodes on the plane of Symmetry are restrained against displacement normal

to the crack plane until the crack front has passed, after which they are
released. The forces on the restrained nodes are monitored.

It has been shown by Keegstra [14] that, for a given mesh, the force on
the crack tip node is proportional to the stress intensity factor K and
may, therefore, be used as a crack extension criterion. In the execution
of the programme, the crack tip node is released when the restraining
force reaches a prescribed value F., which depends on the mesh size and
on the dynamic toughness Kp. The crack speed is calculated from the
intervals between the release times of adjacent nodes. The crack is
assumed to have arrested if the force on the crack tip nodes does not
Treach F¢ within a reasonable period measured from the time at which the
previous node is released. This time period is chosen, arbitrarily, to
correspond to a crack speed of 0.01 Cf.

When the force on the crack tip node reaches F. and the node is released,
the force is not reduced instantaneously to zero but is reduced linearly
with nodal displacement, according to the equation.

Fy = F Q1 - u/uc) (6)
where t*
5 s _/ _)_“t(t dt )
o
and Uc = reference displacement
u(t) = nodal displacement
t* = current time

Thus u is a time-averaged displacement. The node therefore does work
against the ""holding-back" force Fb. This provides an energy sink which,
by making an appropriate choice of the reference displacement u , re-
presents the generalised surface energy. It has been shown [14] that the
appropriate value of uc is given by
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Y
U = BAly (8)

where K, is the stiffness of the node. This method of providing an energy
sink is illustrated in Figure 2.

DCB ANALYSES

A force was applied to the node representing the loading pin, such that
the initial stress intensity factor K; reached a value which exceeded

Kic by a factor chosen to characterise the bluntness of the initial crack.
The dynamic calculation was initiated by releasing the crack tip node.
Throughout the analysis, the displacement of the loading pin was held
constant, equal to the initial value, modelling fixed-grip conditions.

To enable a comparison with the experimental results of Kobayashi and
Mall (see [7]) and the analytical results of Hahn et al [7], the material
properties used by those authors, which relate to Homalite-100, were used
in the present analyses. Also, the same value of was used, although
this was necessarily inferred from the quoted value of the initial strain
energy. Figure 3 shows the assumed relationship between Kp/Kic and crack
speed v [7]. Figure 4 shows the relationship between the computed crack
speed and crack length. For comparison, the figure also shows the ana-
lytical results of Hahn et al and the experimental results of Kobayashi
and Mall. Figure 5 shows the variation with time and/or crack length of

the various energy terms including the potential energy of the loading pin.

FINITE STRIP ANALYSES

The geometry for which these analyses were made is shown in Figure 6. The
specimen was assumed to be of steel. As for the DCB analyses, fixed grip
loading conditions were assumed. In each of these analyses, however, the
crack tip nodes were released at prescribed time intervals, regardless of
the magnitude of the force on the node. In other words, the specimens
were assumed to be ''sliced'" at constant speed. The act of slicing at a
given speed implies a certain ratio of static and dynamic energy release
rates (Ggra7/Gp). The analyses covered a range of constant slicing speeds
from 0.18 Cy to 1.8 Cr where Cp is the Rayleigh wave speed. Figure 7
shows the crack face displacement profile at a sequence of time values,
for a single slicing speed (2917 m/s = 0.98 CR). From the figure it may
be seen that, for this slicing speed, the crack front propagates at a
speed which is lower than the slicing speed. For slicing speeds below
about 0.7 Cg, the crack front speed was found to be equal to the slicing
speed. For slicing speeds above this value, the crack front speed was
always lower than the slicing speed and approached assymptotically the
Rayleigh wave speed as the slicing speed was increased. The relationship
between the crack front speed and the slicing speed is shown in Figure 8.

For each value of slicing speed, Gp was calculated (using equation (1))
for a sequence of values of crack length. For this geometry, these values
were nearly constant over the range of crack length. An average value of
Gp was calculated for each slicing speed. The ratio g(v) = Gp/GgTaT is
shown plotted against the ratio v/Cp in Figure 9. The figure shows the
analytical results of Nilsson [2] for an infinite strip. The figure also
shows results of similar slicing runs on the DCB geometry shown in Figure
1 and the analytical results of Freund [1] for an infinite plate.
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DISCUSSION AND CONCLUSIONS

The close agreement between the predicted and measured crack speeds in the
DCB geometry, see Figure 4, gives some confidence in the validity of the
computer programme and in the method of modelling the energy sink at ?he
crack tip. Further evidence of the validity of the programme is provided
by Figure 3, which shows, in addition to the input relationship between.
Kp/Kjc and v, values of Kp/Kjc obtained from the output values of G using
the relationship

Gy KDZ £(v)/E 9

The function f(v), given by Nilsson [2], depends on the crack speed, shear
wave speed, longitudinal wave speed and Poisson's ratio.

The potential energy of the loading pin, shown in Figure 5, exhibits
fluctuations which are due to the arrival of stress waves at the loading
pin. The propagation of stress waves, and reflections from the boundaries
of the specimen, are clearly seen in various forms of graphical output
which have been generated, also in a film which has been made from these
outputs.

For the finite strip, Figure 9 shows the marked dependence of g(v) on the
geometry of the strip. Additional results, obtained for longer strips,

show that, as the strip length is increased, g(v) approaches Nilsson's

result for an infinite strip. For the finite strip geometry, instantaneous
values of Gp never exceeded GSTAT by more than a few percent. (Recall that
Figure 9 shows the average value of g(v) for each crack speed). By contrast,
in the DCB geometry, instantaneous values of Gp exceeded GSTAT by up to

50%. In other words, in a DCB specimen under fixed grip loading, kinetic
energy plays a greater role in the mechanics of crack propagation.

The form of Figure 8 is not yet fully understood by the authors. One
possible explanation of the non-linearity, for crack speeds above about

0.7 CR, is the compressive stress which according to Baker [15] developsA
ahead of the crack at high crack speeds. Some evidence of this compressive
stress was seen in the computer outputs, despite the coarse meshes which
were necessarily used.

In conclusion, the results so far obtained give confidence in the validity
of the programme. The results presented in the pgper_provide‘aéditiongl
knowledge and understanding of crack propagation in DCB and finite strip
geometries. The programme is now being used in the analysis of experi-
mental results for these and other geometries.
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Figure 2 Fracture Energy Model
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Figure 4 Calculated and Experimental Crack Speed Against Crack Length (DCB)
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Figure 7

Figure 8

Figure 9
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