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A SIMPLE ANALYTICAL MODEL FOR THE THICKNESS DEPENDENT TRANSITION
FROM PLANE STRESS TO PLANE STRAIN IN BODIES WITH A CRACK

G. Prantl®

INTRODUCTION

From experimental work an influence of the dimensions of specimens con-

taining cracks on their fracture behaviour is apparent. While there is

a large amount of data on size effects, and there are empirically derived
criteria for the dimensions of laboratory test specimens used to obtain

results applicable to full scale structures, the quantitative understanding

of the problem and of the effect of the various parameters is not yet

perfect. A possible consequence of increasing the dimensions from small speci-
mens to large structures is a transition from a plane stress to a plane

strain state of deformation in the critical region of the material and a
connected transition in fracture mode.

The purpose of the present paper is to construct a simple analytical model,
using continuum mechanics principles, whica is able to describe the influ-
ence of specimen thickness on the stress state in the neighbourhood of a
crack, assuming linear elastic material. For the more important practical
case of elastic plastic material behaviour, where yield zones develop,

some limited conclusions can be drawn on tie basis of an analogy between
the elastic and the elastic plastic distri>ution of the in-plane stresses
in front of the crack.

Although it is possible to calculate the stresses and strains in a body
of finite dimensions using three dimensional finite element techniques,
the present work is justified, because it allows the effect of the various
parameters of the problem (e.g., thickness, external load, Poisson's con-
stant, crack length) to be estimated in a direct closed form.

DEVELOPMENT OF AN ELASTIC MODEL

The work described here is restricted to the following class of problems:
A disc, made of linear elastic material, contains a crack penetrating
through the thickness. The dimensions of the disc in its main plane are
large compared to the length of the crack, 2c. The thickness 2t can take
any value between zero and infinity. The body is loaded by uniformly
distributed tensile stresses, 0,» Perpendicular to the plane of the crack.
Figure 1 explains the coordinates used, as well as the notation of the
stresses.

In the vicinity of the crack tip, there is a concentration of the stresses
0, and Oy, which is known from the solution of the respective plane problem
(1) s £ g/c is either approaching zero or infinity. In the first case

0z = 0, in the second case g, = (Or+o¢). In real bodies 0, is within
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these limits.

It is assumed for the sake of argument, that the disc is divided into two
zones, as shown in Figure 2. The inner zone I contains the material under
relatively high stresses, while the ringshaped outer zone II includes the
rest of the body within the region of the stress concentration. In each of
the two zones the sum of the stresses Op+04 is averaged.

If the zones were free toO deform laterally, each would suffer a contraction,
caused by the average stresses in it. This individual deformation of each
zone results in a misfit at their common boundary. Before they are reas-
sembled, the difference in lateral contraction must be cancelled. This can
be done by the application of shear stresses Ty 1y with the proper magni-
tude and distribution to the common boundary o%’the zones. Still con-
sidering the separated zones, it is noticed that these shear stresses,
which are necessary to maintain the continuity of the whole body, induce
tensile stresses O, in zone I and compressive stresses in zone II. It is
assumed in the model, that the stresses 0, are uniformly distributed over
the cross section of the respective zone.

The calculated stresses Op and Oy, are mean values over the cross section
of the respective zone, an therefore depend on the zone size chosen. For
the mathematical formulation of this idea, the following conditions are

used:
- Equilibrium of forces in direction z on zone I alone.

- Equilibrium of forces in direction z on zone I and zone II together.
- A compatibility relation at the common boundary of the two zones,

formulated with a series expansion with respect to r of the displace-

ment in direction z.

- Hooke's law.
- Boundary conditions for o, at the median plane and at the surfaces

of the disc.

In order to simplify the treatment of the problem, the cross sections of
the zones are assumed to be circular. The radius of inner zone I is 'a’',

the radius of outer zone II is 'b', (see Figure 2).

Using the conditions listed leads to a differential equation for the
average stress op, in zone I:

o, - AZOIZ = - A% B(z) . (1)

The double prime denotes the second derivative of 0y, with respect to z.
The parameter A contains the dimensions of the zones and Poisson's con-

stant V:
_ [
A= v2(1+\)) ooy 2

B(z) is a function, which consists of the difference of the stresses Oy

and o4 between the zones,
at the common boundary of the zones. While the first part can be deter-

mined from the distribution of the stresses Oy and Og, the second part
remains unknown.

and a term that depends on the radial deformation

Part V - Analysis and Mechanics

The boundary conditions are:
1 - -
91, (0) = 0, UIZ(t) =0, OIZ'(t) =0 . (3)

The p?ime denotes.the first derivative of oy, with respect to z. The
solution of equation (1), using the first two boundary conditions (3), is:

t t
o, = All- / B(z)sinh Az dz + tangh At S B(z)cosh XAz dz|cosh Az -
z
2
- sinh Az S B(z)cosh Az dz} .
! (4)

Equi;izn (4) does(not satisfy the third boundary condition. The reason
is at equation (1), which results from the simplified one di i
analysis, is of the second order. " ne dinensional

Tge complete solution, accounting for the radial stresses at the borders
of the zones too, would be a differential equation of the fourth order.

In ordgr.to intrgducg the retroaction of G, on the stresses Op and Td»
a sPec1f1c.funct10n is proposed for B(z), which makes it possible, to
satisfy this boundary condition too: ’

B(Z) =g 1 = 2 cosh Az
1 . S
“nax cosh At + At 5

sinh At

Here, 071z is the i
, max greatest possible value of op, for
consideration, namely: Iz thie prable uader

2
a = V(Ao + A o1 - &
12 ax (Ao, + Aoy) (1 bz |" (6)

The diffe?ences of the stresses between the two zones, A0y and A0y, can

be deFermlned.frgm Fhe respective stress distribution. The form of

eq:atlon (5) is indicated by still unpublished photoelastic measurements,

Sisirpg tbe au;hoi. Further, it is based on the assumption, that the z-
ibution of the in-plane stresses and deformations i

by the parameter A. s

Inserting equation (5) into equation (4) results in the final equation
for op,, the average stress in zone I:

o}
1z _ . (At cosh At+sinh At)cosh Az-Az sinh At sinh Az
o1, sinh At cosh At + At ’ (7
max

From equation (7) the average stress in zone II, oryz, and the shear stress
T1,II at the common boundary can easily be deduced, if necessary.
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If the thickness of the disc is large compared to the dimension b, it is
also large compared to the half crack length c, because b and ¢ are of the
same order of magnitude. In this special case equation (7) reduces to:

OIz

g
Iz
max

=1 - (1+2g) e 6, (8)

In this equation the distance £ from the surface is used instead of z,
where £ = t-z.

APPLICATION OF THE ELASTIC MODEL

Before the stresses can be calculated, the input data must be derived
from the distribution of the in-plane stresses. The parameter A,
equation (2) and the stress OTzpax? equation (6) are determined using the
two dimensional solution of the crack problem (1). The results are pre-
sented in Figure 3 as a function of the relative zone size a/b.

The mean stresses within the two zones and the parameter A are strongly
influenced by a/b. The dimension 'b', according to the model, defines

that part of the body which is able to constrain the material in zone I.

It is specific to the particular problem treated and it can be estimated
from the distribution of the in-plane stresses. It is reasonable to assume
'b' proportional to the fading distance of the perturbation of the stress
field. In this work, b = 0.5 ¢ is used. This is an arbitrary choice,
suited to the application of Sneddon's elastic solution. The dimension
'a', which fixes the size of zone I, is varied in the numerical analysis.
If 'a' approaches zero, then 0Oy, becomes infinitely large and the ratio
012/Vv(0p+0¢)1 approaches unity. With this data, equation (8) is evaluated.
It yields the distribution of 0y, over the thickness coordinate &, according
to Figure 4.

Figure 5 illustrates the influence of the choice of 'a', with 'b' kept
constant, as determined by the distribution of 0y and 04. The condition
of equilibrium of the forces in direction z, formulated on zone I and
zone IT together, requires that the integral of 0, over any cross section
of the two zones must vanish. Therefore tension in zone I causes com-
pressive stresses in zone II. Finally, Figure 6, derived from equation
(7), gives an example of the rise of the out-of-plane stress op, in the
mid plane with increasing relative thickness t/c.

TREATMENT OF PROBLEMS WITH PLASTIC ZONES

When real materials are considered, plastic zones are found ahead of the
crack tip, even at very small loads. According to the crack model of
Dugdale [2] for instance, perfect plastic behaviour of the material con-
fines the stress within the yield zone to the uniaxial yield stress 's',

As this crack model gives no information on the magnitude of the stresses
op and Oy within the plastic zone except at the y-axis ahead of the crack
tip, eva?uation of the input data, needed to calculate 01, analogous to the
elastic case, 1is not possible.

But, setting the radius 'a' of zone I equal to the length of the yield
zone according to the Dugdale model enables some conclusions to be drawn

Part V - Analysis and Mechanics

concerning the effect of the external load on 0p,. To our present know-
ledge, the length of the plastic zone varies through the thickness of the
body. The same should reasonably be assumed for the dimension 'a', but

the model can deal only with a constant 'a'. As long as the radius 'a'

is smaller than or equal to the radius of the plastic zone, it has a very
small influence on the stress difference (Aoy+AGy), because the stress

is constant within the plastic zone. Therefore the effect of the external
load on a given body, which determines the plastic zone size, can be inves-
tigated separately from the choice of the radius 'a'.

case. The term At/t/c is the ratio between the effective thick-
ness and the geometrical thickness of the body. The smaller this term, the
smaller is O01,. The term (s-1,20_)/0_ is the analogue of the elastic stress
difference (A°r+AG¢)°m' The smaller its value, the smaller is the maximum
stress, Olzp,x» that can be achieved with a sufficiently large thickness.
Using this data, Figure 8 finally demonstrates the fall off of 01, with
rising external load, when the dimensions of the body remain constant.

Figure 7 compares‘7 and (Ao,+Aoy) with the respective values of the elastic
/3/2(1+v§

It should be pointed out again, that this kind of treatment of elastic-
plastic problems cannot be expected to give absolute values of the stress
O1z- It only indicates the effect of external load on the stress ¢, in a
specimen of given dimensions.

ACKNOWLEDGEMENTS

The permission of the Swiss Federal Institute for Reactor Research (EIR)
and the Swiss Federal Institute of Technology Ziirich (ETHZ) to publish
this work, which is part of a dissertation submitted to ETHZ, is
acknowledged.

REFERENCES

1. SNEDDON, I. N., Proc. Roy. Soc., A 187, 1946, 229.
2. DUGDALE, D. S., J. Mech. Phys. Solids, 8, 1960, 100.

)

S

<

I M

Btk



Figure 1

Figure 2

Fracture 1977, Volume 3

B

f/ 7

2

c

b

Dimensions, Coordinates and Notation of Stresses

(9r+9%)

(@0 +80y)

%0

I1lustration of the Proposed Model.
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Figure 3 Average In-Plane Stresses Within the Zones and Parameter A for
a Crack in a Large Disc

Figure 4 Distribution of o1, through the Thickness for Various Values
of the Relative Zone Size a/b
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Figure 5 Average O, in Zone I and Zone II for Various Values of a/b
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Figure 6 91, in the Mid-Plane as a Function of Relative Thickness
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Figure 8 or, at the Median Plane as a Function of Load for Various
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