A NUMERICAL APPROACH FOR STABLE CRACK-GROWTH AND FRACTURE CRITERIA

G. Rousselier*

I. INTRODUCTION

The behaviour of a cracked body in large-scale yielding conditions has been intensively studied in the past years. The well-known crack-tip parameters like J-integral or C.O.D. are generally computed and the influence of plasticity studied. However the computations are made for a stationary crack and give no information about stable crack-growth and corresponding fracture criteria.

Stable crack-growth has been studied by Andersson [1] by performing successive relaxation of crack-tip nodal forces in a finite-element programme. In this paper we attempt to refine this approach by introducing on the extension of the crack-line special finite-elements modelling the behaviour of the end-region and allowing the elimination of stress and strain singularities. Stable and unstable crack-growth will be connected to the fracture properties of the material submitted to complex loading.

II. FRACTURE CRITERION FOR AN ELASTIC BODY

The usual boundary conditions on the crack-line, mode I: \(u_2 = 0, \sigma_{12} = 0 \), \(\sigma_2 = \sigma_{12} = 0 \) on the crack faces, lead to infinite stresses and strains at the crack-tip. Finite stresses and strains are obtained with the boundary condition \(\sigma_2 = f \left(u_2 \right) \) instead of \(u_2 = 0 \), as in the Beremblatt's model [2] and also in the Dugdale's model [3]. The main difficulty lies in the interpretation of the normal displacement \(u_2 \) in a continuum model. In this paper \(u_2 \) is interpreted from the strain \(\epsilon_2 = u_2/h \) of a strip with height \(h \) located on the extension of the crack line, in a way similar to the rigid-plastic strip model introduced by Rice [4]. Dugdale's model is based on the Tresca criterion, which gives \(\sigma_2 = f \left(u_2 \right) = \sigma_y \) for an elastic-perfectly plastic material in plane stress conditions. In this paper a state of plane deformation is assumed; the relation \(\sigma_2 = f \left(u_2 \right) = g \left(\epsilon_2 \right) \) represents the local stress-strain curve in the strip and is related to the flow rule of the material.

The geometry of the crack-tip is modified by the insertion of the strip. But such a model is perhaps more realistic in this highly strained region than the usual reference to the initial geometry of a cut with zero crack-tip radius.

In this way, for an infinite linear-elastic medium (plane strain), the problem is reduced to the one-dimensional integral equation:

* Laboratoire de Mécanique des Solides, Ecole Polytechnique, 91120 - PALAISSEAU, France and E.D.F., Etudes Matériaux, Les Renardières, 77250 - MORET SUR LOING, France
The model gives an interesting possibility to connect the global criterion of fracture with a local criterion at the crack-tip, defined by \(\sigma_2 = \sigma_R \) or \(\sigma_2 = \sigma_g \) defined numerically that in small-scale initiation and unstable crack-growth depend on the size of the specimen. Moreover the second one depends on the load-displacement control. With load-control the instability occurs after a few steps of crack-growth. With displacement-control the crack-growth is stable; it goes on under a quasi-constant, though decreasing load (curve 5a); the maximum load can be somewhat greater than that obtained with load-control (curve 3a).

IV. FRACTURE CRITERIA

Figure 2 shows different critical values of the stress-intensity factor \(K_I \) as function of specimen size. These values are deduced from Figure 1 as follows: \(K_{max} \) is the value of \(K_I \) at maximum load; \(K_{max} \) at the load obtained by extrapolation of the linear part of the \(P - d \) curve up to the displacement at maximum load; \(K_0 \) at the load defined by the intersection with "5%-secant"; \(K_0 \) is computed according to the equivalent energy concept introduced by Mitt [8]; \(K_1 \) is deduced from the J-integral at the onset of stable crack-growth. \(K_0 \) and \(K_{max} \) decrease for \(b < 1 \) to 1.5 \((K_0/\sigma)^2 \), as it is verified with medium-strength steels if the thickness is sufficient. \(K_{max} \) and \(K_0 \) are more constant and bracket the value of \(K_I \); these two values give a good estimate of the fracture toughness \(K_I \) with "medium-size" specimens [between 0.25 and 1.5 \((K_0/\sigma)^2 \)]. With smaller specimens \(K_{max} \) and \(K_0 \) are no longer well-defined for the computed value of the displacement at maximum load is not accurate.

The J-integral is computed for two cases: \(\sigma_R = 2,500 \text{MPa} \) and \(3,200 \text{MPa} \). \(V = -(1/2B)(dL/adL) \) and \(V^* = -(2/3)(Pc/L) \) are also computed. The obtained values are converted into \(K_I \), \(K_0 \) and \(K_{max} \) by the usual plane strain formula \(J = [(1-\nu^2)/E]K_I^2 \). They fit well together, at least until full plasticity, which justifies the experimental determination of \(J \) (Figure 3).

The J-integral gives a good criterion for the initiation of crack-growth. However, since \(K_0 \) deviates very little from the linear curve, \(K_0 \) (Figure 3) is a more simple, but approximate, criterion for the initiation.

For the two cases investigated \(K_{max} \) is notably smaller than \(K_I \), about 30% for the weaker material \((\sigma_R = 2,500 \text{MPa}) \) and 70% for the tougher one \((\sigma_R = 3,200 \text{MPa})\). In that case it was not possible to reach the point of instability, because of computer limitations; \(K_I \) is greater than \(200 \text{MPa}\cdot\text{m}^{1/2} \); this shows the high dependence of \(K_I \) with \(\sigma_R \). It does not seem that the value of the J-integral at the onset of stable crack-growth allows the direct determination of fracture toughness on small specimens.

V. FURTHER DEVELOPMENTS

The magnitude orders of the computed values \(K_I \) and \(K_J \) are quite good, however the model will be refined in the following ways.

1 These two values are given by the well-known relations used for the experimental determination of \(J \), the former with a few specimens, the latter with a single deep-cracked specimen \((a/\sqrt{P} > 0.6) \) [9].

Andersson and Bergkvist [5] have resolved numerically this equation with a law \(\sigma = \varepsilon (u_2) \) linearly increasing than decreasing; in this paper we consider a more general law. The non-linear part of \(\varepsilon (u_2) \) will be used to define the length of a "plastic zone" limited to the strip.

\[u_2 (x) = [2 (1-v^2)/E] \int_a^x \varepsilon (t) \, dt + \frac{m}{2}. \]

The J-integral is found to be path-independent outside the "plastic zone". For a remote path, at the onset of fracture, its value is \(J_c = [(1-v^2)/E] K_c \), while for a path along the boundary of the "plastic zone" \(J_c = 2h S_p \). This latter result is the same as given by Rice [6] but is based on a different model. So the constant \(k \) should be equal to \(2hE/(1-v^2) \). This is verified numerically with a good accuracy.

III. ELASTIC-PLASTIC BODY. STABLE CRACK-GROWTH

A finite-element approach is convenient in the case of an elastic plastic body. The incremental plastic deformation, in plane strain conditions, is taken according to the Prandlt-Reuss flow law along with the von Mises criterion. An "implicit" algorithm recently given by Nguyen, Q. S. [7] is used. The implicit algorithm eliminates all the numerical and systematic errors usually found in the "explicit" method. Furthermore loading, unloading and reloading can be easily done.

The elastic-plastic constants are: \(E = 200,000 \text{MPa}, v = 0.3, \sigma_0 = 700 \text{MPa}, \) linear hardening with a 1,000 MPa modulus. The law \(\varepsilon = \varepsilon (\sigma) \) in the strip is derived from the conventional curve obtained in the tension test, but a deduced curve corresponding to uniaxial strain. It is chosen to represent the complex stress state at the crack-tip. The fracture of each element occurs at a critical stress \(\sigma_2 = \sigma_R = \varepsilon (\varepsilon_p) \) for \(\varepsilon > \varepsilon_p \) the curve \(\varepsilon (\sigma) \) drops to zero. During crack growth, the crack-tip nodal force is relaxed in five equal steps.

We study a three-point bend specimen (width \(W \), span \(S = 4 \, W \), thickness \(B \), initial crack-length \(a_0 \), \(h = 4 \, a_0 \)). In order to avoid the effect of element size the results are not reported for crack-lengths \(a \, W < a < a_0 \). We show that the uncracked ligament yieled the crack-tip have the same dimension, and remain unchanged for specimens of different sizes. The side of these triangular elements is taken equal to 0.1 mm for a width \(W \) from S to 200 mm. The strip height \(h \) is no longer the characteristic length of the process of fracture as it was the case for an elastic body. In fact \(h \) may be related to the crack-tip radius, and the results are independent of \(h \) if it is sufficiently small (here for \(h < 0.01 \text{mm} \)). It is \(s \) which is the characteristic length: fracture occurs when \((a/\sqrt{P}) (s/\sigma_R) \) over a distance \(s \) from the crack-tip.
First, the uniaxial strain hypothesis will no longer be imposed to the special crack-elements. The algorithm for the finite-elements in plasticity will be used also for the special crack-elements, that is to say the increments of stresses will be given as functions of actual stresses, hardening parameter and increments of strains \(\Delta \sigma_1 = \Delta \sigma_1 / \Delta x_1, \Delta \sigma_2 = \Delta \sigma_2 / \Delta x_2, \Delta \sigma_3 = 0 \).

Second, instead of a critical stress \(\sigma_f \), a local criterion \(F (\sigma_1, \sigma_2, \sigma_3) = 0 \) will be used. It will be related to tests on notched - but not cracked - specimens of a given material.

With these improvements an agreement is hoped between numerical and experimental values of \(K_{IC} \) for the given material. Moreover theoretical and experimental results in large-scale yielding conditions will be compared.

REFERENCES

4. RICE, J. R., First Int. Conf. on Fracture, Sendai, Japan, I, 1965, 283.
9. PELISSIER-TANON, A., Application of the J-Integral for Fracture Toughness Measurements, Advanced Seminar on Fracture Mechanics, October, 1975, ISPRA, Italy

Figure 1 Computed Dimensionless P versus d Curves with \(\sigma_f = 2,300 \) MPa for Different Specimen Sizes (1 : W = 200 mm, 2 : 50 mm, 3 : 20 mm, 4 : 10 mm, 5 : 5 mm; \(a_0 / W = 0.5 \)) with Load Control (Curves 1 to 5) or Displacement Control (Curves 6a and 6a). Points of Crack-Growth Initiation are Shown on Each Curve by Roman Numerals (I to V). Curve 6 is for a Stationary Crack. Load P versus Crack-Growth \(\Delta a \) Curves are Shown for \(W = 20 \) mm and 5 mm.

Figure 2 Computed Critical Values of \(K_I \) and \(K_J \) for \(\sigma_f = 2,300 \) MPa as Function of Specimen Size (\(W = 200, 100, 50, 20, 10 \) and 5 mm; \(a_0 / W = 0.5 \) and 0.7). Symbols are Defined in the Main Text.
Figure 3 Computed K versus d Curves with $\sigma_f = 3,200$ MPa for a $W = 20$ mm, $\sigma_y/W = 0.6$ Specimen. K_J, K_J for a Stationary Crack, K_{Jc}, K_u. Symbols are Defined in the Main Text.