KR B

S

Fracture 1977, Volume 3, ICF4, Waterloo, Canada, June 19 - 24, 1977

A NUMERICAL APPROACH FOR STABLE CRACK-GROWTH AND FRACTURE CRITERIA

G. Rousselier*

I. INTRODUCTION

The behaviour of a cracked body in large-scale yielding conditions has been
intensively studied in the past years. The well-known crack-tip parameters
like J-integral or C.0.D. are generally computed and the influence of plas-
ticity studied. However the computations are made for a stationary crack
and give no information about stable crack-growth and corresponding frac-
ture criteria.

Stable crack-growth has been studied by Andersson [1] by performing suc-
cessive relaxation of crack-tip nodal forces in a finite-element programme.
In this paper we attempt to refine this approach by introducing on the
extension of the crack-line special finite-elements modelling the behaviour
of the end-region and allowing the elimination of stress and strain singu-
larities. Stable and unstable crack-growth will be connected to the frac-
ture properties of the material submitted to complex loading.

II. FRACTURE CRITERION FOR AN ELASTIC BODY

The usual boundary conditions on the crack-line, mode I: u = 0, 0,2 = 0,
(02 = 012 = 0 on the crack faces), lead to infinite stresses and strains at
the crack-tip. Finite stresses and strains are obtained with the boundary
condition 02 = £ (uz) instead of u, = 0, as in the Barenblatt's model [2]
and also in the Dugdale's model [3]. The main difficulty lies in the
interpretation of the normal displacement u; in a continuum model. In this
paper uz is interpreted from the strain €; = uz/h of a strip with height

2 h located on the extension of the crack line, in a way similar to the
rigid-plastic strip model introduced by Rice [4]. Dugdale's model is based
on the Tresca criterion, which gives 0, = f (uz) = o, for an elastic-per-
fectly plastic material in plane stress conditions. °In this paper a state
of plane deformation is assumed; the relation g, = f (uz) = g (€2) repre-
sents the local stress-strain curve in the strip and is related to the

flow rule of the material.

The geometry of the crack-tip is modified by the insertion of the strip.
But such a model is perhaps more realistic in this highly strained region
than the usual reference to the initial geometry of a cut with zero crack-
tip radius.

In this way, for an infinite linear-elastic medium (plane strain), the
problem is reduced to the one-dimensional integral equation:
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uz (x) = [2 (1-v¥)/mE] [ o, (t) In |t-x| dt . (1)

-

Andersson and Bergkvist [5] have resolved numerically this equation with
a law 02 = f (up) linearly increasing than decreasing; in this paper we
consider a more general law. The non-linear part of f (u;) will be used
to define the length of a ''plastic zone' limited to the strip.

The model gives an interesting possibility to connect the global criterion
of fracture with a local criterion at the crack-tip, defined by 02 = Of¢
or €, = €¢. We show numerically that in small-scale yielding the local
criterion defined above yields the global criterion Ky = Kyc with a good
accuracy. We obtain Kfc = k Sfg, where Sf is the area under the curve

0 =g (€) up to the limiting strain €f for which the stress vanishes.

The J-integral is found to be path-independent outside the ''plastic zone'.
For a remote path, at the onset of fracture, its value is )

Je = [(1-v2)/E] Kfc, while for a path along the bounda?y of the-”plastlc
zone'" J. = 2h Sg.  This latter result is the same as given by Rice [6] but
is based on a different model. So the constant k should be equal to

2hE/ (1-v?). This is verified numerically with a good accuracy.

III. ELASTIC-PLASTIC BODY. STABLE CRACK-GROWTH

A finite-element approach is convenient in the case of an elastic plastic
body. The incremental plastic deformation, in plane strain conditions, is
taken according to the Prandtl-Reuss flow-rule along with the von Mises
criterion. An "implicit'" algorithm recently given by Nguyen, Q. S. [7].15
used. The implicit algorithm eliminates all the numerical and systematic
errors usually found in the "explicit'" method. Furthermore loading, un-
loading and reloading can be easily done.

The elastic-plastic constants are: E = 200,000 MPa, v = 0.3, Gy = 700 M?a,
linear hardening with a 1,000 MPa modulus. The law 0 = g (€) ih the strip
is not the conventional curve obtained in the tension test, but a deduced
curve corresponding to uniaxial strain. It is chosen to represent the
complex stress state at the crack-tip. The fracture of each element occurs
at a critical stress 0z = 0¢ = g (g¢); for € > €¢ the curve g (€) drgps

to zero. During crack growth, the crack-tip nodal force is relaxed in
five equal steps.

We study a three-point bend specimen (width W, span S = 4 W, thickness B,
initial crack-length ag, b = W-ay). In order to avoid the effect of element
size the elements adjacent to the uncracked ligament near the crack-tip have
the same dimension, and remain unchanged for specimens of different sizes.
The side s of these triangular elements is taken equal to 0.1 mm for a
width W from 5 to 200 mm. The strip height h is no longer the characteris-
tic length of the process of fracture as it was the case for an elastic
body. In fact h may be related to the crack-tip radius, and the results

are independent of h if it is sufficiently small (here for h < 0.01 mm).

It is s which is the characteristic length: fracture occurs when

02 (mean) > Of over a distance s from the crack-tip.
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Part V - Analysis and Mechanics

The load-deflection curves P (d) for op = 2,300 MPa are given in Figure 1
along with the crack-growth curves P (£a) for W = 20 and 5 mm. The points
of crack-growth initiation and unstable crack-growth depend on the size of
the specimen. Moreover the second one depends on the loading conditions.
With load-control the instability occurs after a few steps of crack-growth.
With displacement-control the crack-growth is stable; it goes on under a
quasi-constant, than decreasing load (curve 5a); the maximum load can be
somewhat greater than that obtained with load-control (curve 3a).

IV. FRACTURE CRITERIA

Figure 2 shows different critical values of the stress-intensity factor K1
as function of specimen size. These values are deduced from Figure 1 as
follows: Kpax is the value of Ki at maximum load; Kfsx at the load obtained
by extrapolation of the linear part of the P - d curve up to the displace-
ment at maximum load; at the load defined by the intersection with
""5%-secant"’; Kp is computed according to the equivalent energy concept
introduced by Witt [8]; Kj; is deduced from the J-integral at the onset
of stable crack-growth. and Kpay decrease for b < 1 to 1.5 (Kic/o,)
as it is verified with medium-strength steels if the thickness is suf¥i—
cient. Kjax and Kp are more constant and bracket the value of Kic; these
two values give a good estimate of the fracture toughness Kic with "medium-
size' specimens [between 0.25 and 1.5 (Kic/o )2]. With smaller specimens
Khax and Kg are no longer well-defined for tge computed value of the dis-
placement at maximum load is not accurate.

2

The J-integral is computed for two cases: of = 2,300 MPa and 3,200 MPa.

V = -(1/B)[dU/dalq and V* = -(2/B) (U*/b) are also computed!. The obtained
values are converted into Kj, Ky and KG by the usual plane strain formula

J = [(1—v2)/E]K2. They fit well together, at least until full plasticity,
which justifies the experimental determination of J (see Figure 3).

Ky at the initiation of crack-growth, i.e., Kji, is practically independent
of the specimen size and depends only of the material considered:

Kji = 54 MPa-m'? for og = 2,300 MPa (see Figure 2), Kj; = 100 MPa-m*? for
Of = 3,200 MPa (for W = 20 mm, ag/W = 0.5, 0.6, 0.7 - for W = 50, 100 and
200 mm, a,/W = 0.5). The J-integral gives a good criterion for the initia-
tion of stable cracﬁ-growth. However, since Kj deviates very little from
the linear curve, K{ (Figure 3) is a more simple, but approximate, criterion
for the initiation.

For the two cases investigated Kyi is notably smaller than Kic, about 30%

for the weaker material (of = 2,300 MPa) and 70% for the tougher one

(ofg = 3,200 MPa: in that case it was not possible to reach the point of
instability, because of computer limitations; KIC is greater than 300 MPa'mUZ;
this shows the high dependence of Kic with o¢). It does not seem that the
value of the J-integral at the onset of stable crack-growth allows the

direct determination of fracture toughness on small specimens.

V. FURTHER DEVELOPMENTS

The magnitude orders of the computed values Kic and Kj; are quite good.
However the model will be refined in the following ways.

! These two values are given by the well-known relations used.for the
experimental determination of J, the former with a few specimens, the
latter with a single deep-cracked specimen (a/W > 0.6) [9].
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First, the uniaxial strain hypothesis will no longer be imposed to the J
special crack-elements. The algorithm for the finite-elements in plasticity Evﬁjr

will be used also for the special crack-elements, that is to say the incre- y P-d curves
ments of stresses will be given as functions of actual stresses, hardening 6
parameter and increments of strains Ae;, = Auy/Axy, Ae; = Auy/h, Aey, = 0.
o1 S
Second, instead of a critical stress Of, a local criterion F (0,, 05, 03) = 0 L
will be used. It will be related to tests on notched - but not cracked- P.Aa
specimens of a given material. Curves

With these improvements an agreement is hoped between numerical and experi-
mental values of Kic for the given material. Moreover theoretical and
experimental results in large-scale yielding conditions will be compared.
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Figure 2 Computed Critical Values of K; and Ky for of = 2,300 MPa as Func-
tion of Specimen Size (W = 200, 100, 50, 20, 10 and 5 mm; ao/w =
0.5 and 0.7). Symbols are Defined in the Main Text

5




Fracture 1977, Volume 3

Kd
K (MPa.m 1/5) *
2 Ky o
2001 2 Sl Y
....... Ky
. no crack
growth
1004+_Kui V4
ASTM—#Z
) di d(mm)
o] 0.5 1
Figure 3 Computed K versus d Curves with of = 3,200 MPa for a W = 20 mm,

Ky for a Stationary Crack,
Symbols are Defined in the Main
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