A NUMERICAL APPROACH FOR STABLE CRACK-GROWTH AND FRACTURE CRITERIA

G. Rousselier*

INTRODUCTION

The behaviour of a cracked body in large-scale yielding conditions has been intensively studied in the past years. The well-known crack-tip parameters like J-integral or C.O.D. are generally computed and the influence of plasticity studied. However the computations are made for a stationary crack and give no information about stable crack-growth and corresponding fracture criteria.

Stable crack-growth has been studied by Andersson [1] by performing successive relaxation of crack-tip nodal forces in a finite-element programme. In this paper we attempt to refine this approach by introducing on the extension of the crack-line special finite-elements modelling the behaviour of the end-region and allowing the elimination of stress and strain singularities. Stable and unstable crack-growth will be connected to the fracture properties of the material submitted to complex loading.

II. FRACTURE CRITERION FOR AN ELASTIC BODY

The usual boundary conditions on the crack-line, mode I: $u_2=0$, $\sigma_{12}=0$, $(\sigma_2=\sigma_{12}=0)$ on the crack faces), lead to infinite stresses and strains at the crack-tip. Finite stresses and strains are obtained with the boundary condition $\sigma_2=f$ (u_2) instead of $u_2=0$, as in the Barenblatt's model [2] and also in the Dugdale's model [3]. The main difficulty lies in the interpretation of the normal displacement u_2 in a continuum model. In this paper u_2 is interpreted from the strain $\varepsilon_2=u_2/h$ of a strip with height 2 h located on the extension of the crack line, in a way similar to the rigid-plastic strip model introduced by Rice [4]. Dugdale's model is based on the Tresca criterion, which gives $\sigma_2=f$ (u_2) = σ_y for an elastic-perfectly plastic material in plane stress conditions. In this paper a state of plane deformation is assumed; the relation $\sigma_2=f$ (u_2) = g (ε_2) represents the local stress-strain curve in the strip and is related to the flow rule of the material.

The geometry of the crack-tip is modified by the insertion of the strip. But such a model is perhaps more realistic in this highly strained region than the usual reference to the initial geometry of a cut with zero crack-tip radius.

In this way, for an infinite linear-elastic medium (plane strain), the problem is reduced to the one-dimensional integral equation:

^{*} Laboratoire de Mécanique des Solides, Ecole Polytechnique, 91120 - PALAISEAU, France and E.d.F., Etudes Matériaux, Les Renardières, 77250 - MORET SUR LOING, France

$$u_2(x) = [2(1-v^2)/\pi E] \int_{-\infty}^{+\infty} \sigma_2(t) \ln |t-x| dt$$
. (1)

Andersson and Bergkvist [5] have resolved numerically this equation with a law σ_2 = f (u_2) linearly increasing than decreasing; in this paper we consider a more general law. The non-linear part of f (u_2) will be used to define the length of a "plastic zone" limited to the strip.

The model gives an interesting possibility to connect the global criterion of fracture with a local criterion at the crack-tip, defined by $\sigma_2=\sigma_f$ or $\epsilon_2=\epsilon_f$. We show numerically that in small-scale yielding the local criterion defined above yields the global criterion $K_I=K_{IC}$ with a good accuracy. We obtain $K_{IC}^2=k~S_f$, where S_f is the area under the curve σ = g (ϵ) up to the limiting strain ϵ_f for which the stress vanishes.

The J-integral is found to be path-independent outside the "plastic zone". For a remote path, at the onset of fracture, its value is $J_{\text{C}} = [(1-\nu^2)/\text{E}] \ \text{K}_{1\text{C}}^2$, while for a path along the boundary of the "plastic zone" $J_{\text{C}} = 2h \ \text{S}_{\text{f}}$. This latter result is the same as given by Rice [6] but is based on a different model. So the constant k should be equal to $2h\text{E}/(1-\nu^2)$. This is verified numerically with a good accuracy.

III. ELASTIC-PLASTIC BODY. STABLE CRACK-GROWTH

A finite-element approach is convenient in the case of an elastic plastic body. The incremental plastic deformation, in plane strain conditions, is taken according to the Prandtl-Reuss flow-rule along with the von Mises criterion. An "implicit" algorithm recently given by Nguyen, Q. S. [7] is used. The implicit algorithm eliminates all the numerical and systematic errors usually found in the "explicit" method. Furthermore loading, unloading and reloading can be easily done.

The elastic-plastic constants are: E = 200,000 MPa, ν = 0.3, σ_y = 700 MPa, linear hardening with a 1,000 MPa modulus. The law σ = g (ϵ) in the strip is not the conventional curve obtained in the tension test, but a deduced curve corresponding to uniaxial strain. It is chosen to represent the complex stress state at the crack-tip. The fracture of each element occurs at a critical stress σ_z = σ_f = g (ϵ_f); for ϵ > ϵ_f the curve g (ϵ) drops to zero. During crack growth, the crack-tip nodal force is relaxed in five equal steps.

We study a three-point bend specimen (width W, span S = 4 W, thickness B, initial crack-length a_{O} , b = W-a_{\text{O}}). In order to avoid the effect of element size the elements adjacent to the uncracked ligament near the crack-tip have the same dimension, and remain unchanged for specimens of different sizes. The side s of these triangular elements is taken equal to 0.1 mm for a width W from 5 to 200 mm. The strip height h is no longer the characteristic length of the process of fracture as it was the case for an elastic body. In fact h may be related to the crack-tip radius, and the results are independent of h if it is sufficiently small (here for h < 0.01 mm). It is s which is the characteristic length: fracture occurs when σ_2 (mean) > σ_f over a distance s from the crack-tip.

The load-deflection curves P (d) for σ_f = 2,300 MPa are given in Figure 1 along with the crack-growth curves P (Δa) for W = 20 and 5 mm. The points of crack-growth initiation and unstable crack-growth depend on the size of the specimen. Moreover the second one depends on the loading conditions. With load-control the instability occurs after a few steps of crack-growth. With displacement-control the crack-growth is stable; it goes on under a quasi-constant, than decreasing load (curve 5a); the maximum load can be somewhat greater than that obtained with load-control (curve 3a).

IV. FRACTURE CRITERIA

Figure 2 shows different critical values of the stress-intensity factor K_I as function of specimen size. These values are deduced from Figure 1 as follows: K_{max} is the value of K_I at maximum load; K_{max}^d at the load obtained by extrapolation of the linear part of the P - d curve up to the displacement at maximum load; K_Q at the load defined by the intersection with "5%-secant"; K_B is computed according to the equivalent energy concept introduced by Witt [8]; K_{Ji} is deduced from the J-integral at the onset of stable crack-growth. K_Q and K_{max} decrease for b < 1 to 1.5 $(K_{IC}/\sigma_y)^2$ as it is verified with medium-strength steels if the thickness is sufficient. K_{max}^d and K_B are more constant and bracket the value of K_{IC} ; these two values give a good estimate of the fracture toughness K_{IC} with "medium-size" specimens [between 0.25 and 1.5 $(K_{IC}/\sigma_y)^2$]. With smaller specimens K_{max}^d and K_B are no longer well-defined for the computed value of the displacement at maximum load is not accurate.

The J-integral is computed for two cases: σ_f = 2,300 MPa and 3,200 MPa. $V = -(1/B) [dU/da]_d$ and $V^* = -(2/B) (U^*/b)$ are also computed. The obtained values are converted into K_J , K_V and K_V^* by the usual plane strain formula $J = [(1-v^2)/E]K^2$. They fit well together, at least until full plasticity, which justifies the experimental determination of J (see Figure 3).

 K_J at the initiation of crack-growth, i.e., K_{Ji} , is practically independent of the specimen size and depends only of the material considered: $K_{Ji} \simeq 54~\text{MPa} \cdot \text{m}^{1/2}~\text{for}~\sigma_f = 2,300~\text{MPa}~\text{(see Figure 2)},~K_{Ji} \simeq 100~\text{MPa} \cdot \text{m}^{1/2}~\text{for}~\sigma_f = 3,200~\text{MPa}~\text{(for W = 20 mm, a}_0/\text{W} = 0.5, 0.6, 0.7 - \text{for W = 50, 100}~\text{and}~200~\text{mm},~a_0/\text{W} = 0.5).$ The J-integral gives a good criterion for the initiation of stable crack-growth. However, since K_J deviates very little from the linear curve, K_J^d (Figure 3) is a more simple, but approximate, criterion for the initiation.

For the two cases investigated K_{Ji} is notably smaller than K_{IC} , about 30% for the weaker material (σ_f = 2,300 MPa) and 70% for the tougher one (σ_f = 3,200 MPa: in that case it was not possible to reach the point of instability, because of computer limitations; K_{IC} is greater than 300 MPa·m $^{\text{V2}}$; this shows the high dependence of K_{IC} with σ_f). It does not seem that the value of the J-integral at the onset of stable crack-growth allows the direct determination of fracture toughness on small specimens.

V. FURTHER DEVELOPMENTS

The magnitude orders of the computed values $K_{\mbox{IC}}$ and $K_{\mbox{J}i}$ are quite good. However the model will be refined in the following ways.

¹ These two values are given by the well-known relations used for the experimental determination of J, the former with a few specimens, the latter with a single deep-cracked specimen ($a/W \ge 0.6$) [9].

First, the uniaxial strain hypothesis will no longer be imposed to the special crack-elements. The algorithm for the finite-elements in plasticity will be used also for the special crack-elements, that is to say the increments of stresses will be given as functions of actual stresses, hardening parameter and increments of strains $\Delta \epsilon_1 = \Delta u_1/\Delta x_1$, $\Delta \epsilon_2 = \Delta u_2/h$, $\Delta \epsilon_{12} = 0$.

Second, instead of a critical stress σ_f , a local criterion F $(\sigma_1, \sigma_2, \sigma_3) = 0$ will be used. It will be related to tests on notched - but not cracked-specimens of a given material.

With these improvements an agreement is hoped between numerical and experimental values of $K_{\hbox{\scriptsize IC}}$ for the given material. Moreover theoretical and experimental results in large-scale yielding conditions will be compared.

REFERENCES

- 1. ANDERSSON, H., J. Mech. Phys. Solids, 21, 1973, 337.
- BARENBLATT, G. I., Advances in Applied Mechanics, VIII, 1962, Academic Press, New York.
- 3. DUGDALE, D. S., J. Mech. Phys. Solids, 8, 1960, 100.
- 4. RICE, J. R., First Int. Conf. on Fracture, Sendai, Japan, I, 1965, 283.
- 5. ANDERSSON, H. and BERGKVIST, H., J. Mech. Phys. Solids., 18, 1970, 1.
- 6. RICE, J. R., Fracture II, 1968, 234.
- 7. NGUYEN, Q. S., Contribution à la théorie macroscopique de l'élastoplasticité avec écrouissage, Thesis, CNRS AO 9317, Paris, 1973.
- 8. WITT, F. J., Nuclear Engineering and Design, 20, 1972.
- PELISSIER-TANON, A., Application of the J-Integral for Fracture Toughness Measurements, Advanced Seminar on Fracture Mechanics, October, 1975, ISPRA, Italy

Figure 1 Computed Dimensionless P versus d Curves with $\sigma_f=2,300$ MPa for Different Specimen Sizes (1 : W = 200 mm, 2 : 50 mm, 3 : 20 mm, 4 : 10 mm, 5 : 5 mm; $a_0/W=0.5$) with Load Control (Curves 1 to 5) or Displacement Control (Curves 3a and 5a). Points of Crack-Growth Initiation are Shown on Each Curve by Roman Numerals (I to V). Curve 6 is for a Stationary Crack. Load P versus Crack-Growth Δa Curves are Shown for W = 20 mm and 5 mm. P/BW $\sigma_y=0.093$ is the Limit Load from the Slip-Line Field Theory

Figure 2 Computed Critical Values of K_I and K_J for σ_f = 2,300 MPa as Function of Specimen Size (W = 200, 100, 50, 20, 10 and 5 mm; a_O/W = 0.5 and 0.7). Symbols are Defined in the Main Text

