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A FINITE ELEMENT ANALYSIS FOR DETERMINING
DUGDALE MODEL SOLUTIONS OF CRACKED BODIES

K. J. Lau* and C. L. Chow**

INTRODUCTION

ellipse corresponding to an opening crack in an infinite sheet under
uniform tension [4]. That segment on the crack surface is then taken to
provide an estimate for the stress intensity factor as quantified by the
infinite sheet configuration. Mathematically, this may be expressed as

K=p! \/ae' (1

where P' = uniform pressure in infinite sheet containing
the simulating crack
a,' = half-crack length of the simulating crack

The matching can be effected either (i) by direct fitting of the displace-
Ments onto an elliptic curve with the crack tip as an apex [1,2], or (ii)

Also based on the same infinite sheet crack configuration is the Dugdale
strip yield model [6] characterized by the crack opening displacement [7]1.
In this model (Figure 1) an ideal elastic-plastic material is considered
and the crack is assumed to deform elastically under the action of ex-
ternally applied uniform tension Po with a tensile stress Oy acting over
a hypothetical extension of length s at each end of the crack. Oy can be
identified with the yield stress of the material. By superposition of
the two stress fields and consideration of the finiteness of the stresses
at the location of the hypothetical crack tip, it can be shown that the
load/yield-stress ratio is given by [6]

p Y2

o_4 . - s _2 -1 a

g = 7 sin (2 S > = cos o (2)
y e
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and the COD is given by

a a kiys)
8 e_8_x 0 3
§ = =B 8 loga =g g a log (sec zi;) (3)
where €y is the elastic yield strain. By the relation between Eg and tbe
overall strain on a given gauge length, critical COD-values can be applied
to real structures for which the overall strains are easily measurable.

The present paper deals with the determination of the COD in cracks of
arbitrary shape using the ellipse parameters in the K-determination
through the conic-section approach. The advantage of the method is that
both models have been built on the same Griffith crack geometry so that
correspondence between p' and py, ae' with ag in equations (1) and (2)
makes the determination of COD just a convenient extension of the K-
finding process.

NUMERICAL DETERMINATION OF DUGDALE MODEL SOLUTION

In the original Dugdale model a crack in an infinite sheet was considered
and the load/yield-stress ratio was obtained through the finiteness of
the stresses at the hypothetical crack-tip region, which is equivalent to
a cancellation effect between the elastic stress intensity factors due to
the two stress fields po and Oy. In a cracked body of grbitrgry shape,
the same principle can be applied. Thus if the stress intensity factor
Kip due to the uniform pressure po is expressed as

= 12 4
KIp Py ae kIp 4

and the stress intensity factor K1y due to a crack opening Oy at the crack
tip region is expressed as

= 12 5
KIy Gy a, kIy )

where kIP and kIy are geometrical correction factors such that

kIp - k1p<ae>
and kIy = k1y<a, ae),

then according to the Dugdale's theory

- K =0,

k
g_o_ = k_IX (6)
y Ip
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The crack opening displacement can be found by superposition of the dis-
placements obtained from the two finite element analyses, involving po and
Oy as

y

" @)

where 6p* and 6y* are the crack surface separations due to unit magnitude
of py and Oy respectively, while §4*, the superposed value, is the overall
COD corresponding to unit magnitude of Ty.

The above method of analysis was carried out by Hayes and Williams [8]
using Bueckner's formulation [9] in the treatment of finite element
analysis results, which is essentially an energy approach requiring at
least two sets of finite element calculations for each loading system so
that the Dugdale model solution for one particular combination of a and
a¢ values necessitates four sets of finite element calculations. On the
other hand, using the conic-section simulation approach, only two finite
element analyses are necessary for any particular combination of geometry
and loading system. Furthermore since both the Dugdale model and the
conic-section analysis methods are built on the Griffith crack geometry,
it is possible that closed-form solutions can be applied to reduce the
amount of the finite element calculations. Specifically if the solution
for the externally applied load for a particular value of ag is obtained,
then the values of COD for different values of s can be calculated through
the modifications of equations (2) and (3) so that no finite element
calculation involving the Oy geometry is necessary. This is described in
the following section.

DUGDALE MODEL SOLUTIONS FROM SIMULATION ELLIPSE PARAMETERS

Three ways of implementing the ellipse parameters approach for the finding
of COD are considered:

Method A: In the conic-section analysis applied to the displacements of
two nearby points on the crack surface, the segment between these two
points is matched with a segment on the Griffith crack opened by uniform
pressure and having the same stress intensity factor K (Figure 2). The
actual value of the surface displacement at the middle of the segment is
preserved in the resulting simulation ellipse. Within this ellipse model,
the superposition of a uniform tensile stress over a length s on the crack
surface adjacent to the crack tip to produce zero value of resultant K

can be quantified according to (2) as

S P!

.2 o
F=251n 40_, (8)
e ¥
while the corresponding COD produced is given by (3) as
gt a '
=8 F i (9
§ = T £ 2 logj

where various terms in the above equations are defined in Figure 2. Re-
turning to the actual crack under consideration, the necessary value of
the stress Oy in the region s to produce the stress intensity factor will
be different from Oy', but the value of the COD should remain the same,
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subject to the validity of two assumptions; firstly, the displacements of
the points P; and P, (Figure 2) must be truly representative of the crack
tip stress intensity factor; secondly, the crack shape produced by uniform
stress Oy in region s in the real crack system should be functionally
similar to that produced by a uniform stress Oy' in the region s of the
model system,

Method B: Each simulation ellipse corresponding to a segment on the actual
crack surface is considered in turn with respect to a given value of s.

The effective change in crack surface separation at r = s produced by Oy'
over the length s is calculated as

4p 'a ! 2 12 o ! a !

= o _e - a S8y ..

6y B (l N '2) TE @ log Py (10)
e

where the first term on the right hand side is the separation due to Po'
alone and the second term is the COD as given by equation (3). An average
is taken of the dy-values from all the simulating ellipses and the crack
opening displacement is then evaluated as the difference between the crack
surface separation produced by the actual load applied as calculated by
the finite element analysis, (interpolated if necessary) and the average
8y-value. This method is in principle the same as method A except that
tge effective stress intensity factor is now taken as the average value
represented by the whole crack profile. Furthermore this method is more
convenient for treating values of s that do not match with the nodal
positions of the finite element mesh used. There is however one minor
restriction in that the ag'-values of the simulation ellipses at points
close to the hypothetical crack tip may sometimes fall short of s so that
in some extreme cases, sufficient Sy-values may not be available to give a
good average value.

Method C: Both methods A and B are subject to the assumption that
equation (10) governs the change in crack surface separation due to o, on
the actual crack surface. To check whether this equation based on the
original Dugdale model adequately represents the crack profile produced,

a more practical assumption is considered - that the ratio of the displace-
ments due to the two sets of loadings in the actual system remains the
same as that in the model system. Since the displacements are to be pro-
duced by the loading systems giving the stress intensity factors of equal
magnitude as reflected in an opening displacement, the effects of finite
width, etc., on these representative displacements should be equal. Hence
in this third method, a ratio of displacements is obtained as

8o ' a'
s£=1- il & (11)
P

whence the COD can be found as the product of (1 - 6y/dp) and the actual
displacement 6p obtained by the finite element analysis.

In the above methods the COD-values are found with no reference made to

the load/yield-stress ratio in the actual system. An approximation pro-
cess is now used to transfer the value of Oy' in the model system to that
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of Oy in the actual system by using the correction factors of some stan-
dard configurations. Thus Oy is estimated as

ag '

SZ_ = ki (s, W - a) (12)

where ki corresponds to the mode I correction factor function k; (ae, W)
of the fully loaded crack in a plate of finite width 2w.

DISCUSSIONS AND CONCLUSIONS

Due to the space restriction in this presentation, only the results ob-

tained for a centrally cracked finite-width plate geometry are presented.
Results for other configurations can be found in [10] and the COD-values
by the methods A and B are compared in Figure 3 in dimensionless form as

6% = PE—W 8 (13)
o

It can be seen that remarkable agreement in the computed results has been
achieved except for the combinations of the high ag/W and s/ae values.
The reason for the disparities is probably that finite-width effect in
these cases renders the displacements of the points remote from the crack
tip inadequate in the representation of the crack-tip stress intensity
factors. Method B is expected to produce more reliable results in these
cases provided that sufficient Sy-values are made available for the aver-
aging process. This provision is found to have been largely satisfied
except for only a few extreme cases. The results from method C are found
to be practically co-incident with those from method B for most cases so
that, for clarity of the plotting, they are not shown in the same graph,
but are given in Table 1 together with those of method B and the results
from reference [8]. Also shown in the table are the estimated values of
the load/yield-stress ratio. Since satisfactory agreement can be observed
between the results of the present method and that of Hayes and Williams
[8], it may be inferred that conceptually similar processes have been ex-
ccuted in relating the stress ratio to the plastic zone size through
equating the magnitudes of the K-values from the two stress systems.
Comparison of the COD values reveals that appreciable disagreement between
the methods B and C exists only at the high s/ae values and a/s = 0.1 or
0.2, i.e. when the plastic zone length is much larger than that of the
actual crack length. This establishes the validity of equation (10) as
mentioned earlier. Comparison with the COD-values given by Hayes and
Williams show rather disappointing discrepancies. One major problem in
both approaches is that the COD is seldom a large fraction of the dis-
placement due to the external applied stress system so that small per-
centage error in the displacement calculations may become magnified in
the COD-values. From the nature of the finite element mesh used by Hayes
and Williams, which consists of coarse grids with constant element width
along the line of the crack length, underestimates of the displacements
are expected. This probably explains the discrepancies between the COD-
values for the central crack case. Nevertheless agreement in the results
may be considered as satisfactory when the plastic zone size is not too
large as compared with the actual crack size while the accuracy of each
method depends heavily on the accuracy of the displacements obtained.
The present methods via the conic-section analysis follow closely
the original idea of representing a crack-tip strain field by an opening
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displacement. Agreement among the three methods of implementation lends
credibility to the principle used and the practically constant vglues of
oy' and Sy from different simulation ellipses for different‘sectlons of
tKe crackysurface in practically all cases under consideration, as exem-
plified by Table 2, further confirm the validity of the method.
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Part V - Analysis and Mechanics

Table 1 COD for Centrally Cracked Plate in Uniform Tension, H/W = 3.5
§* Po/Ty,
Hayes § Hayes §
a/W| s/a | Method B | Method C |Willians ;rsﬁzgt Williams
1972 e 1972
0.5000 0.2666 0.2317 0.2471 0.6344 0.6406
0.6667 0.3712 0.3996 0.3449 0.7457 0.7662
0.7500 0.4455 0.5390 0.4109 0.8140 0.8208
0.8000 0.5669 0.6321 0.4623 0.8304 0.8559
0.1 0.8333 0.6116 0.7702 0.5054 0.8523 0.8690
0.8572 0.6977 0.9017 0.5421 0.8686 0.8808
0.8750 0.5853 0.7795 0.5768 0.8898 0.8887
0.8889 0.9805 1.2950 0.6120 0.9388 0.8944
0.3333 0.3876 0.3825 0.3680 0.4879 0.4996
0.5000 0.5760 0.5997 0.5247 0.6124 0.6322
0.6400 0.7290 0.7639 0.6366 0.6728 0.6981
0.2 0.6667 0.8750 0.9637 0.7269 0.7112 0.7367
0.7143 1.0620 1.1840 0.8051 0.7408 0.7610
0.7500 1.1676 1.3316 0.8775 0.7699 0.7772
0.7778 1.0604 1.1653 0.9540 0.8290 0.7889
0.2500 0.5016 0.5091 0.4725 0.4024 0.4125
0.4000 0.7621 0.7686 0.6821 0.5295 0.5359
0.5000 0.9837 1.0238 0.8364 0.5751 0.6008
0.3 0.5714 1.2638 1.3169 0.9663 0.6074 0.6400
0.6250 1.5420 1.6323 1.0845 0.6450 0.6654
0.6667 1.6700 1.6936 1.2093 0.7128 0.6835
0.2000 0.6090 0.6163 0.5786 0.3376 0.3477
0.3333 0.9670 0.9738 0.8432 0.4384 0.4574
0.4 0.4386 1.3100 1.3368 1.0452 0.4923 0.5166
0.5000 1.6840 1.7558 1.2237 0.5305 0.5529
0.5556 2.1171 2.1211 1.4079 0.5924 0.5776
0.1667 0.7471 0.7550 0.6980 0.2852 0.2935
0.4 0.2857 1.2239 1.2307 1.0290 0.3690 0.3879
: 0.3750 1.7363 1.7646 1.2941 0.4164 0.4392
0.4444 2.4278 2.4276 1.5564 0.4632 0.4717
0.1428 0.9281 0.9314 0.8492 0.2383 0.2444
0.6 0.2500 1.6165 1.6163 1.2717 0.3066 0.3226
0.3333 2.5103 2.4953 1.6484 0.3606 0.3655
0.7 0.1250 1.2234 1.2279 1.0644 0.1917 0.1970
) 0.2222 2.3148 2.2529 1.6485 0.2519 0.2585
0.8 0.1111 1.8185 1.8127 1.4364 0.1466 0.1483
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Figure 1

Table 2 O; and Gy* Values Obtained from Method B

Fracture 1977,

Volume 3

1 1 *
r/ae a, /ae Gy /Po 5y
0.1667 2.4593 1.6960 1.581
0.2250 1.3611 1.6933 1.656
0.3000 1.1268 1.6967 1.704
0.3917 1.0401 1.7018 1.734
0.4958 1.0066 1.7061 1.751
0.6083 0.9841 1.7111 1.764
0.7500 0.9720 1.7152 1.773
0.9167 0.9761 1.7130 1.769
s/a=1.4, a /W=20.6, &*=2,700

€ P
—3e —~f— Ag —
-s -—a—--a'] s T'-

Geometry of Slit and Equivalent System for Dugdale Model
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(a)
ACTUAL SYSTEM
WITH F, OVER
ENTIRE CRACK
SURFACE

s=1/2(ry+ry)) ——=

(b)

Figure 2 Actual Crack Shape and Simulation Model System
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Figure 3 COD for Central Crack Under Uniform Tension, H/W = 3.5





