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A CRACK GROWTH GAGE FOR ASSESSING FLAW GROWTH POTENTIAL
IN STRUCTURAL COMPONENTS

A. F. Grandt, Jr.*, R. L. Crane* and J. P. Gallagher**

INTRODUCTION

The objective of this paper is to describe an approach for monitoring
operational service of individual structures or components for potential
crack extension. Although much prior effort has gone into development of
techniques and procedures for estimating remaining useful structural 1ife
[1 - 5], the current emphasis on increased requirements for tracking crack
growth potential during service (e.g. references [6 and 7]) remains a
formidable challenge.

The approach suggested here consists of mounting a precracked specimen or
""gage'' onto a load bearing member as shown schematically in Figure 1.
Linear elastic fracture mechanics analyses are employed to relate crack
growth in the gage with extension of a real or assumed initial flaw
located in the structure. Crack growth in the gage can then be monitored
during service for an indication of corresponding extension of the assumed
structural defect. Moreover, as shown schematically in Figure 2, this
relationship permits allowable maximums for the structural crack size
(based on safety criteria or repair economics) to specify corresponding
gage limits.

Derivation of the analytical relation between the two crack lengths is
described below and demonstrated with sample calculations for various
flaw geometries. Experimental verification of a portion of the mathe-
matical model is also presented, followed by a summary discussion of the
crack gage concept for tracking structural damage.

ANALYSIS

Considering Figure 1, assume that a small precracked coupon (crack length
= a,) is fixed along its ends to a large structural component containing
a crack of length ag. The problem here is to correlate growth of ag

with extension of a,. In all subsequent discussion, it will be assumed
that linear elastic fracture mechanics conditions are satisfied in both
the gage and structure during service loading. In addition, the gage is
sufficiently small that its attachment does not change the stresses in
the structure.

Relation Between Gage and Structural Loads

The objective here is to determine the gage load P caused by application
of the uniform structural stress Og shown in Figure 1. Since the gage
endpoints are fixed to the structure, the total displacement & along the
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gage length L equals that of the attached structure and is given by

L oL
6:fde=—— (1)
S E
[e) S
Here €4 is the uniform strain over L, and Eg is the modulus of elasticity
for the structure. Similarly, the gage has a component of displacement §'

given by

_ PL 2
o = BWEg (2)

where B, W, and E are, respectively, the thickness, width, and elastic
modulus of the gage.

The gage also has another component of displacement &' due to the presence

of the flaw. Using the compliance concept outlined in reference [8], this
additional deflection is given by

8" = p A (3)

where A is the crack compliance related to the strain energy release rate
G, and the stress intensity factor Kg of the gage by the plane strain re-
lationship

K2 (4)

G__l ax_
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Here Vv is Poisson's ratio for the gage. For plane stress equation (4) is
given by G = ng/Eg. Expressing the stress intensity factor in the form

P
K=W/TEB (5)

where B8 is a dimensionless geometry factor which can depend on crack length,
equations (4) and (5) reduce to

a
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Thus, the displacement of the gage is given by

PL + PA =S %)

6=6'*‘5"=5ng E

which when solved for gage load with equation (6) becomes
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Thus the load in the cracked gage is directly related to the uniform gross
stress in the structure. This uniform stress is the same stress that in-

Gage and Structural Crack Relation

The structural crack length ag will now be found as a function of gage
crack length ag. Assume that the fatigue crack growth rate in each member
can be expressed in the form [9]

F=CK (9)

where da/dF is the average crack extension per block of service usage
(e.g. an aircraft flight) and C and m are empirical constants. The para-
meter K is a stress intensity factor that senses the influence of stress
history on the crack growth process. As such, K is normally obtained by
multiplying a stress history characterizing parameter (e.g. 0 = rms stress
range) by the stress intensity factor coefficient for the geometry of in-
terest. For the structure, K would be

=5k = 10
K=0(3)=cs\/‘nas Bs (10)

For brevity, assume that the gage and structure are made from the same
material and have the same C and m in equation (9). Using the fact that
both gage and structure see the same number of loading blocks F, inte-
grating equation (9) for a fixed number of flights with equations (5) and
(10) yields .

S g

F = f —da___ . —da (11)
Cio vma B P m
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which reduces by employing equation (8) and cancelling like quantities to

a
/‘ 8 da fg da
— = (12)
m m
as {Bsfﬂa} aog {fBg/na}

Note that equation (12) is independent of stress history (explicitly), so
the as versus ag response is also anticipated to be independent of stress
history. This is a first order assumption that might have to be modified
when sufficient data become available.

A numerical integration scheme was employed here to solve equation (12)
for as as a function of ag. First, thc integration of the right-hand
side of equation (12) was carried out with the trapezoidal rule together
with Romberg's extrapolation method. The upper bound of the absolute
error for this procedure was specified to be less than 1 x 10 5. Next,
an upper limit for the left hand side of equation (12) was chosen and
the integration performed as before. Depending on the agreement of the
left hand value with the previously determined right hand side, an
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adjustment was made in the upper limit (ag) of the left integral and the
process repeated until the values of the two integrals agreed to within
0.02%.

EXAMPLE RESULTS

Solving equation (12) by the numerical procedure described above, the
relation between structural and gage flaw lengths was found for several
geometric configurations. Results from two sample cases are briefly
described below. In both examples, the structure and gage had the same
C, E, and m, while Poisson's ratio for the gage was 0.333.

Consider an edge cracked coupon (50 mm long by 25 mm wide) attached to a
large plate containing a 6.4 mm diameter radially cracked hole (length

= 1.3 mm) as shown in Figure 3. Numerical results from equation (12) for
m = 4 (a constant amplitude fatigue crack growth rate exponent typical of
many structural materials) are shown in Figure 3 for various initial gage
flaw sizes (agg = 1.3, 1.9, 2.5, and 3.8 mm). Note that the results show
a strong depengence on initial crack size, varying from a fast growing

structural crack (agg = agg = 1.3 mm) to a response where gage crack growth
significantly amplifies corresponding extension of the structural flaw
(8ps = 1.3 mm and dog = 3.8 mm). Thus, varying the initial crack size

provides one means for designing a gage for various degrees of amplification

of structural crack growth.

If the gage flaw is located in the structural component rather than in an
attached coupon and sees the same remote stress, f = 1 in equation (12).
Experimental data [10] for this special case, provided a means of checking
equations (9) and (12) of the model. Briefly, the experimental set-up was
as follows. Long specimens of 7075-T651 aluminum (width = 150 mm, thick-
ness = 12.7 mm) containing both a radially cracked hole and a centre crack
in series as shown in Figure 4, were subjected to complex variable ampli-
tude loading representative of an aircraft stress history. Since the crack
growth exponent m would not be known a priori, computations were made for
m =3, 4, and 5, a range encompassing expected values for this material.
Note in Figure 4 that these analytical predictions closely bound the test
data. Thus, this excellent agreement between experiment and analysis
lends credence to equation (9), and subsequent development of equation
(12). Again it should be emphasized here that the numerical calculations
required no knowledge of the actual load history applied to the test
specimen.

CONCLUDING DISCUSSION

A concept for monitoring potential flaw growth in structural components
with a flawed gage has been presented, along with a mathematical model
for the relation between the structural and gage flaw sizes. This re-
lationship, given by equation (12), and demonstrated in Figures 3 - 4,
provides the means for designing a simple crack growth gage capable of
"tail number' tracking a fleet of structures for extension of potential
or known flaws. The proposed gage would have no moving or electronic
components to malfunction, need only minimum instrumentation, and could
be designed for various degrees of amplification between structural and
gage crack lengths (i.e. see Figure 3).
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Since equation (12) relates the gage crack length with the assumed struc-
tural flaw size and depends only on geometric factors and material prop-
erties, extensive records of service loads would not be required to esti-
mate flaw growth. Indeed, the gage provides a direct measure of crack
growth, acting as an analog computer which collects, stores, and analyzes
the severity of the input loads, and then responds with the appropriate
flaw extension. Thus, the loading conditions which affect flaw growth
(i.e. stress level, overloads, temperature, environment, etc.) should be
integrated in the gage prediction of structural crack length on a real
time basis. Although extensive experimental testing of this gage capa-
bility remains for future work, it is encouraging that the data shown in
Figure 4 provide a preliminary verification of the transfer function model
described in equation (12).

The authors believe that the crack gage described here can be used by
logistics management for maintenance decisions in both of the following
two ways: (1) as a simple "go/no go' measure of the necessity for in-
specting or modifying any given structure, or (2) in conjunction with a
Normalized Crack Growth Curve [9]. The crack gage-structural crack

service life. This second decision making concept is explored more fully
in reference [10].
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