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DYNAMICALLY LOADED CRACKS IN STRAIN RATE SENSITIVE MATERIALS
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INTRODUCTION

At the tip of a dynamically loaded or of a rapidly extending crack, high
plastic strain rates € are expected. In strain rate sensitive materials
such as structural steels, the dynamic yield stress Od(é) increases with
the strain rate according to a logarithmic law for low strain rates

(8 < 10%s-!) and according to a linear relation for high strain rates

(& > 10%s7 Yy, [1].

In this paper, small scale yielding on inclined slip planes at a crack

tip is studied under dynamic loading in a strain rate sensitive material.
Effects of inertia are neglected. A solution of the time dependent problem
is presented for general functions og(€): if the loading conditions are
such that Ky(t) = hIVg (Kp = stress intensity factor, t = time, hy = 'load-
ing factor', dot = time derivative) one obtains a constant rate 6 of crack
tip opening displacement (COD)$§, and a close similarity with the equation
governing crack propagation with constant velocity V. For the linear
strain rate dependence of the dynamic yield stress

od(é) =g, + F « & (1)
(0, = static yield stress, F = constant factor) explicit solutions of the
space-time dependent problem are worked out. The analysis shows how an
increasing 'loading factor' hy delays the development of the plastic zone
and of COD, and enhances the elastic stresses immediately ahead of the
crack tip.

Several crack extension criteria are combined with the present analysis
in order to obtain dynamic fracture toughness values Kig-

THEORY

Figure 1 shows the geometry. A time dependent uniform stress o(t) acts on
a two dimensional crack of length 2a. In the z-direction the crack has
infinite length (plane strain). Geometry changes during crack opening are
neglected. Plastic flow is confined to singular slip planes inclined to
the plane of the crack by an angle + 8. The state of plasticity is des-
cribed by a continuous dislocation density D(n,t). The dynamic frictional
shear stress T4() on the slip plane is a function of the displacement
velocity 4 across the slip plane. For high velocitics, &, a linear rela-
tion is assumed
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here t, is the static frictional shear stress and A is a constant factor.
fquations (1) and (2) are not independent of one another since, in Tresca
olids, t, = 0,/2, and the velocity 0 is correlated with the strain rate

! It is a weakness of the present model to obtain infinite plastic strains
concentrated in the singular slip planes. To overcome this difficulty, the
'lastic displacement is assumed to occur in a narrow active zone of width

w, S0
S=0/w , A =F/2w . (3)

fhis assumption is in accordance with the crack opening mechanism proposed
by Neumann [2]. In silicon iron single crystals the width of the active
cone has been observed to be w = 5.10°7 m, [3]

Displacement, D, and dislocation density, u, are correlated by

L(t)
u(n,t) = J D(n',t)dn’ (4
n
Ihe equation of motion of the dislocation density is given by the condition
that the shear stress acting on the slip plane equals the frictional shear
stress Tq. This is expressed in terms of a partial integro-differential
cquation for the unknown dislocation density

L., , L
ar MOS0t e)dn s o) « £(n) VAT
o] ' o

W, (5

where, in isotropic elasticity, A = E/4m(1-v2) with E = Young's modulus,

) = Poisson's ratio. B and f are complicated but known functions [4].

fhe first term in (5) describes the direct interaction between the dislo-
cations in the considered slip plane, the second term contains the stresses
from the other slip plane and the image stresses due to the crack. The
third term is the external stress field o modified by the crack.

Since no rigid barriers piling up dislocations are regarded in the present
model, the boundedness conditions for D(n,t) must be fulfilled at the
crack tip and at the end of the slip plane

lim D(n,t) v/n = 0; D(L,t) = 0. (6)
n=o

The initial state before loading (t < 0) is D(n,t <0) =0
For small scale yielding (L& a) the equation
D(n,t) = D(&) with & = n/L(t) (7)
will be shown to solve the time dependent equation (5). With equation (7)
one obtains from equation (4)

1
u(g) = L[ED(&) + é D(E")de"] (8a)

and, from cquation (5), for small scale yielding
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K. (t)

£ I .

= - ==, (8b)

o > v VI(t) VE

The integral kernel B(£,£') is independent of L and of time in the small
scale yielding limit [4]. So equations (8) exhibit no time dependence,
except through &, if

.

L = 2 = const, or, L(t) = 2.t (9)
and
KI(t)//L(t) = hI//fZ= const, or, K (t) = hI/t_. (10)

% and hy are constant factors, hy is a measure of the rapidity of loading,
and will be called 'loading factor'. So equation (7) yields a steady
state solution characterized by a constant loading factor and by a disloca-
tion distribution expanding with a constant velocity. As a consequence,
the crack tip opening velocity § is constant, or

L(t) 1
S(t) = 2-sin 6 S D(n,t)dn = 2 sin 8 L(t) S D(£)dE. (11)
o o

For a linear strain rate dependence (equation 2), the integral equation
(8) with (9) and (10) becomes a linear singular integral equation which
can be solved numerically after reduction to a Fredholm equation [4, 5],
More general strain rate dependences Tq(u) may be regarded by a 'back-
ward procedure': in equation (8), prescribe an arbitrary tunction t4(8),
solve for D(£), integrate D(E) to obtain G(£) or inversely £ (d), finding
td(1). For both the linear and the non-linear strain rate d¢pendence, it
is convenient to prescribe the slip band extension velocity I = ¢ and to
determine the pertinent loading factor hr from the boundary conditions,
since hy appears linearly in the integral equation (8), with (9) and (10).

RESULTS

Equations (8) and (11) immediately show that L and & can be written in
the form

L(e) = ak;(2)*/0,* = ath,*/o * (12)

5(t)

1}

sxl(t)2/(Eoy) = ethi/(Eoy). (13)

The strain rate at the crack tip, ét’ is obtained from equations (3, 3a,
11, 13):

2K_K z
R B o SR
t 2w sin 8 Eoy 2w sin 9 Ecy : (14)

The dimensionless time independent factors a and depend on the loading
factor hi. They have been determined numerically for the linear strain
rate dependence, (equation 2). Figure 2 shows the results for v = 0.28
and 6 = 70.5 which is the direction of preferred slip in the small scale
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vielding limit [4]. For static loading (hy = 0) the present result, But a certain similarity can be achieved for
0.515, is in excellent agreement with the finite element analysis of

tice and Tracey [6] who obtained 8 = 0.493. For increasing loading factors,

« and 3 decrease. On the other hand, the tensile stresses at the crack

t1p are cnhanced by increasing loading factors (Figure 3). In Figure 3,

the arrows denote the distance from the crack tip corresponding to the

crack tip opening displacement 6. For distances of this order of magnitude

ind smaller, the present method which neglects geometry changes, becomes

invalid due to crack tip blunting [7, 8].

V=K'[:. (15)

The adaptable numerical factor « depends on L (preliminary result:

€ = 0.1 ... 1). Internal stresses originating in the plastic wake of a
crack are not included and so, amongst other effects [12], limit the value
of the equivalence relation (15).
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CONCLUSIONS
DISCUSSION ] ,
) _ ) o ' The present analysis shows that loading according to Ki(t) = hl/g with a §
\s a numerical example we consider a linearly strain rate sensitive material time independent loading factor hy yields uniformly extending dislocation
with F = 2.10° Ns/m® [1], o, = 500 MPa, E/0), = 400, v = 0.28, w = 5.107" m, densities D(n/ft) for general strain rate laws 0q(2). This steady state
loaded with a loading factor hy = 105Nmm™ #25-12 = 21.3 gy/X7X. solution is associated with a time independent strain rate ét at the crack

. tip and exhibits a similarity with a uniformly moving crack.
Figure 2 shows that the slip planes extend with a velocity L = & = 4 m/s,
ind that B has dropped to 24% of the static value. The crack tip opening

velocity is & = 12 mm/s. The strain rate at the crack tip is €&; = 1.3010%/s, ACKNOWLEDGEMENT

ind at £ = 1/2 it is & = 1.3e10%/s, corresponding to a local increase of the

vield stress by 50 per cent and 5 per cent, respectively. For this numeri- The author gratefully acknowledges financial support granted by the

cal example the application of the linear strain rate law (equations 1, 2) European Community for Coal and Steel.

is justified; also the neglect of inertia effects is reasonable since all

velocities are well below the velocity of sound.
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Figure 1 Crack Loaded in Time Dependent Uniform Tension
o(t). Plastic Yielding on Slip Planes of
Length L Inclined by an Angle + 6 to the Crack

Figure 3 Tensile Stress 022 at Distance x Ahecad of the Crack
Tip (Logarithmic Scale) for Arbitrary Time t.
! Pa{gmeter is the Normalized Loading Factor
! hIVA/(oy/K). The Arrows Denote the Points

x = 8. E/OV = 400, v = .28
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Figure 2 Normalized Crack Tip Opening Displacement
B = rSOyE/KI and Normalized Slip Plane Length

o = LO@/K% vs. Normalized Loading Factor

hyvX/(0yVA) (Logarithmic Scale). The dashed
Lines Indicate the Static Values of o and B
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