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AN EVALUATION OF THE APPLICABILITY OF THEORETICAL ]
ANALYSES TO THE FORMING LIMIT DIAGRAM

V. V. Hasek* 4

INTRODUCTION

The forming limit diagram (FLD) serves as an aid to estimate the forming
characteristics of sheet metals using grid line elements. With these
diagrams an analysis of the plastic instabilities (necking and fracture)
in the sheet metals and the determination of the limits of the forming
processes are possible (Figure 1).

The term '"forming limit diagram - FLD" was coined by Keeler [1] in the
year 1965. He found an empirical failure criterion from a determination
of the principal deformations €, and €, measured on the surface adjacent
to failure points. Goodwin [2] extended this whole procedure for a e,
negative value of the strain

The theoretical analysis of FLD is based on an analysis ot the plastic
instabilities occurring during deformation. Three schools of thought
have to be differentiated here. The first theory is based on the mathe-
matical estimation of necking occurring during sheet metal-working [3, 4,
5]. The second theory assumes that the sheet metal is non-homogeneous in
thickness, the slightly lesser thickness existing at some place in the
sheet metal causes necking to occur at this point, lcading ultimately to
failure [6]. The third theory is based on the existence of inclusions in
the sheet metal, around which voids are formed during plastic deformation.
When plastic deformation is sufficiently severe, the voids in the sheet
metal link together, leading to fracture [8].

The present work was conducted to examine the usefulness of various
theories in predicting the location and shape of the FLD, To this end,
the forming limit diagram of a low-carbon steel was cxperimentally deter-
mined and compared with the forming limits predicted by the three theor-
etical approaches.

ANALYSIS OF NECKING

There are two types of necking phenomena which lead to sither localized
failure or diffuse necking (Figure 2). A necking zone {instability)
starts building up at an angle to the direction of maximum normal stress
in case of localized necking while a necking band perpendicular to the
direction of maximum normal stress is formed in diffuse necking. A
theoretical analysis of this problem was made by Hill [9] and Swift [3];
the type of necking was discussed by Keeler and Backofen [7] and Moore and
Wallace [4].

*Institut fur Umformtechnik, Universitat Stuttgart (TH), 7 Stuttgart 1,
Postfach 560, West Germany.
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"APressions for cquivalent stress 0 and equivalent strain € can be written
'Or antsotropic material from a theory proposed by Hill [9].
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where F, G, H, L, M and N are coefficients of anisotropy.

th pringipal Strains €, and €, can be now calculated assuming proportional
deformation and using Levy-Mises criterion as
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where a = 1/ = 01/0,.

}n exponent%al law of one form or other, is used to describe the relation
between equivalent stress and equivalent strain
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LOCALIZED NECKING

“‘1; devéloped the mathematical relation for the localized necking by
considering velocities in the necking zone [9].

‘he analysis js made by assuming the flow condition and plastic potential

f? hf 1d§ntic§l, POossessing a sixfold symmetry, and without consideration
oF the Bauschinger effect and the previous deformation history. The
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material is subjected to uniaxial stresses only and is isotropic.

The equivalent strain for localized necking El can be calculated, using

equation (5), as
12
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The principal deformation ratios €19 and g,9 for localized necking can be
obtained by substituting these values in the corresponding equations.

DIFFUSE NECKING

Swift [3] and Moore and Wallace [4] have analysed mathematically the in-
stability occurring due to diffuse necking. According to Swiftt, necking in
the tension test begins when the load on the testpiece reaches a maximum.
An instability similar to the uniaxial tensile test can occur also in a
testpiece subjected to biaxial stresses. This instability is of impor-
tance for deep drawing and stretching processes. The third principal
stress, perpendicular to the plane of the sheet is not of great importance.

The procedure for calculating the equivalent strain in diffuse necking Ea
is the same as in the case of localized necking. The cquivalent strain
€4 is determined, using equation (5), as

( G)z 3 ( 2 2 vﬁ‘w‘~t'w;ja_81 (/)
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The principal strains €1d and €,4 for diffuse necking cun then be obtained
from the corresponding equations.

s B (G S O

Computer programmes were developed to determine the stress and strain re-
lations using the equations derived from both localized and diffuse neck-

ing, and their limits (€9, €q) are shown in Figure 5.

THEORY BASED IN THE INHOMOGENEITY OF THE MATERIAL (MARCINIAK {o])

In this theory the material is assumed to be initially inhomogeneous.
The local instability occurs first at points of inhomogeneity and a local
necking zone is created. This necking zone will be perpendicular to the

maximum normal stress.

Figure 3 shows an element in a sheet metal with an initial homogeneity,
and the stresses acting on it. This inhomogeneity in the sheet metal
need not necessarily be due to a smaller thickness but can have other
causes such as porosity.

The initial inhomogeneity Ty is defined as
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g
T, = <S—B> (8)
A
where SpA and sp are the sheet hardness outside and in the groove, respec-
tively.

The initial inhomogeneity is normally difficult to determine. Therefore

a value of T, = 0.98 is generally and arbitrarily assumed. If such a
sheet metal is deformed, both the necking zone B and the surrounding area
A expand till fracture occurs in zone B. Marciniak [6] has proposed a
theory to describe the critical strains in region A, assuming that Hill's
theory for anisotropic materials is valid, the flow curve of the material
can be described by the equation proposed by Swift [3], and that the
Levy-Mises relations can be used to anisotropic materials. The equivalent
Stress is defined as:

V3
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where R is the normal anisotropy ratio.

The force equilibrium equation perpendicular to zone B is given by
Figure 3

"Sp = 0, -5, (10)

At the onset of necking in zone B a plane strain (de, = 0) is created.
An internal stress parameter u can be defined as

w = B VIORT) (i)
B VZ(R+1)

The value of u determines the stress condition in region B. Plane strain
condition exists for u = 1. For a known stress ratio U, for which a
corresponding strain ratio g exists, an equation for u is now derived.
The expressions defining O,p and op are substituted in equation (11) and
the following equation is obtained after simplifications.

du |
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where A, B, C, D and E are constants.

(12)

From equation (12) the following equation is obtained
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P 1s calculated from o as follows:

3A -a-1
V= €A " (R+*1)-Ra (14)
Using equation (12) again, we get £, and €op-
e A (15)
! 2Y/(2R+1)/3 5 ‘
and gy = et e (16)
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The set of equations is difficult to programme and computing consumes a
lot of time. The forming limit from this inhomogeneity theory (M) is
shown in Figure 5.

THEORY BASED ON THE INCLUSION OF THE MATERIAL (GOSH I8, 11})
The fracture criterion for this theory was proposed by McClintock [10],

who modeled the process of initiation, growth and coalescence of voids.
Although voids can initiate from intersection shear bands in a4 pure metal,

in most ductile metals void initiation takes place cither by scparation

of included particles from the matrix or by cracking ot inclusions, This
happens rather early during deformation and considerable additional plastic
flow is taking place before fracture. The process ot hearp Joining of

growing voids in sheets is shown schematically in Fipure 4.

The formulation of a criterion for sheet forming applications is then
based on this stress-dependent criterion (10]:

(1+m)of = K (17)

The principal strains at fracture may now be calculated from conventional

plasticity theory. Relations from Hill's theory of anisotrapic plasticity
[9] are used for this purpose with an assumption of proportional straining
of sheets.

The principal strains at fracture are defined as

- (A 2K (n-P ') /C? (14m) ] 120 (18)
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Fracture B 7
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shere A', B' and P! are constants.
. 10- SR s
Ihis is valid if A, n, R and K are known; €1 and €, can be determined. o
= 08 _ failure o
For the determination of these strains, computer programmes were developed t_ el Goodwin

ind the resulting forming limit is shown in Figure 5 (the curve G). _ fracture
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COMPARISON OF THEORIES WITH THE EXPERIMENTAL FLD o 1 T e —— ' ; ’
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‘s will be seen from Figure 5 all the three theories of necking in sheet ”;;<; g4
ayd

metal-working under biaxial stress conditions give curves that are lower )
than the experimentally determined one. 0- R - ‘ - : ' J:[Lkr—rbcxnds f
) 04 03 02 Gl_0 _0o1 02 03 o4 ~l°ca“zgd neeking
I'he theory based on initial inhomogeneity (M) and the theory based on in- z Py

clusions (G) show greater deviation from the experimental values in thg
second strain quadrant (€1, €2) than the values computed from the necking
theory (e4). This arises from the difficulty of choosing a proper value .
tor Ty for the inhomogeneity theory and from the assumption that all Figure 1 Forming Limit Diagram Figure 2
active inclusions are spherical according to the inclusion theory._ In
addition, the values of R, N and B; need be determined to a very high
dccuracy. The smallest discrepancy between experimental and theoretical
curves in the first quadrant (€1,-€2) is shown by the theory based on
inclusions (G).

[n judging the suitability of various theories, it should also pe consi- Gy=0
dered that the equations of the necking and the inclusion theorlgs cgn pe f ///// ;r-T o
solved without much difficulty. On the other hand this process is diffi- G, 2 s £y

Localized Necking in the
Region of Diffuse Necking

cult for the inhomogeneity theory, and the complicated differenFial
equation (12) is particularly hard to solve. The necking theories and the
inclusion theory cover the whole region of ideal drawing (€1 = -£,2) up to G3=0
ideal stretch drawing (e, = €,). The inhomogeneity theory considers only
the region on positive strain (from €, = 0 to €, = €,).

In conclusion, the various mathematical theories of necking offerlsome Figure 3 Sheet Metal Element Showing
insight into the possible mechanisms of necking, without eliminating the Inhomogeneity
need for the determination of forming limit diagrams.

Figure 4 Illustration of Sheet
Metal Elements Containing
Inclusions and voids
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