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A NEW METHOD FOR CALCULATION OF NOTCH-
AND SIZE-EFFECT IN FATIGUE

K. Heckel and W. Ziebart*

INTRODUCTION

In understanding of the microscopic aspects of fatigue, much progress has
been obtained in recent years. This, however, has not brought any new
method for the calculation of fatigue life and fatigue endurance limit of
notched and unnotched specimens, which depend on specimen size and shape.
For this purpose, the following three assumptions about the microscopic
fatigue behaviour of materials are made in this paper:

1) There are flaws statistically distributed in the specimen.

b) The largest of these flaws propagates during fatigue loading and
torms the final crack.

¢) No flaw-extension takes place, unless the size of the flaw exceeds
a certain value.

The first two assumptions formulate a method for the calculation of fatigue
life in the stress-range, where fracture always occurs. The third assump-
tion describes additionally the behaviour near the fatigue limit.

FLAW DISTRIBUTION PRIOR TO FATIGUE LOADING

In technical materials, different kinds of flaws, such as inclusions,

yrain-boundaries, etc., can initiate a fatigue crack. To describe the
importance of each one, it is assumed, that each flaw is cquivalent to a
crack of length a. For fatigue fracture, only the size 1, of the largest

flaw in the specimen is important. For this largest flaw, the following
distribution function was derived by Frechet [1]:

F(ao) = exp[;cl(§i>cﬂ (1)
o

€1, Cz are constants, depending on the material. When an unnotched speci-
men is loaded with the stress 0, the largest flaw causes a stress intensity
factor K, of:

K = o/a_. (2)

o o

Substitution of equation (2) into (1) gives the distribution of largest
stress intensity factors:

o 2C2
F(Ko) = eXP[;C1<K—> } . (3)
[¢]
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When notches and other Stress-raisers are present, stress varies in the
Pecimen, A (comparison) stress can be defined at each point of the speci-
ien by

7T Oax 88X, y, 2y, 4
where o is the maximum stress in the specimen. Then, for notched speci-

nax . °
mens, the dlstrlbutlon function equation (3) is:
2C2
cif ‘max

2¢
A\ Jglx, y, 2)"%2aa| | (5)

F(Ko) = exp|-

ﬁhe_lntegral describes the influence of specimen size and stress distri-
ution. ItilS to be taken over specimen surface, as cracks always initiate
there. Ay is a reference area.

The distribution given by equation (5) is equal to that of cracks of length
JO
K 2
) g ’ (6)

wnich is loc§ted at the point of maximum stress Opmax. The distribution of
the largest flaws in notched specimens is then given by :

C2
- cy (1 2c
F(ao) = exp| - H (§> I g ZdA “ (7)

FLAW-EXTENS TON DURING FATIGUE LOADING

It is gssumed now, that the largest flaw extends due to fatigue loading
according to the Paris—Erdogan relation [2]:

da .
aN = ©3K(a, o) | (8)

Initial flaw size a, and the number of cycles to failure Ng are then con-
nected by:

-1 % da
Ne = - s el (9)
a K

where a. is the critical crack length. The distribution of the number of
cycles to fallgre E(Nf) for a given stress level opax can be calculated
from the dlstrlbutlon of largest flaws F(ao) and vice versa, using

CALCULATION OF STRENGTH NEAR THE FATIGUE LIMIT

r4ny matgrials show a fatigue limit, below which no fracture occurs. When

1hu “Pecimens are loaded on a stress level just above this fatigue limit,

;O?f ?F them break, and some do not. It is therefore assumed, that flaw-
Xtension takeg place only, when the stress intensity factor at the largest
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flaw, according to equation (5), exceeds a threshold K¢p.  Then the pro-
bability P of the value of K, being greater than Kep is:

o Cg
P(K > K ) = l-exp|-c* [_Max s g%%da |, (10)
o th 5 K
th
fhis is equal to the probability, that fracture will occur after a finite

number of cycles at a (cyclic) stress level Omax. The distribution func-
tion of maximum stresses Omax in the specimens, which lead to fracture, is
then given by:

s - . B Ce Cs
F(o ) = L-exp| cso 0 S gttda] . (11)
The influence of notches on the behaviour near the fatigue limit is some-
tines described by the fatigue strength reduction factor Kg, which is
defined as:

- Mmean fatigue strength of unnotched specimen (12)
f  mean (nominal) fat. str. notched specimen

When the fatigue strength has been determined at an unnotched specimen with
@4 surface area A;, then the fatigue strength of a notched specimen with the
“tress distribution g(x, Y, z) 1is given by:

c c
K. =k [L805 y, 2)%tda e, (13)
f t A, ‘
Kt is the theoretical stress concentration factor.

EXPERIMENTAL RESULTS

fhese proposed methods are now used to compare fatigue life and fatigue
limit of unnotched, slender notched and sharp notched specimens, according
to Figure 1. The three different types of specimens were cyclically loaded
in such a way, that the maximum stress at the notch root is equal, At a
(cyclic) stress level of Omax = 2000 N/mm? a cumulative frequency of cycles
to failure for the three types of specimens was obtained us shown in

Figure 2. Though the maximum stress in all kinds of specimens is equal,
the life of the differently shaped specimens is quite different,

With the results for specimen shape 1, fatigue life predictions were made
for the specimens of shape 2 and 3. For this purpose, the cumulative fre-
quency of the largest flaws ap was calculated from the cumilative frequency
of cycles to failure Ng, using equation (9). The parameters €1, ¢y were
then obtained by curve-fitting of equation (7) to the cumulative frequency

of a,. Substitution of the integral for the specimen of shape | by that of
shape 2 and 3 gives the distribution function of the large flaws in those
specimens.  From this, the distribution of cycles to failure can be derived
by means of equation (9). These predictions are shown in Figure 2, and

have a good correlation to the test results,

I'he behaviour near the fatigue limit was studiced, using Maennig's method
[3]. Here the cumulative frequencies of fracture of a specimen are deter-
mined on two different stress levels. The results for the three types of
specimens are shown in Figure 3. The scale is plotted in that way, that

939




Fracture 1977, Volume 2

the ftunction equation (11) gives a straight line.
cumulative frequencies of fracture of specimen shape 1, the two constants

tions of the fatigue strength of the specimens of shape 2 and 3. Figure 3
hows a good correlation between these predictions and the test results,
'hough the fatigue lives of the specimens 2 and 3 are considerably different
f;ce Figure 2), the fatigue strength is nearly equal - according to the
theory.

CONCLUSIONS

It was shown in this paper, that the size- and the notch-effect are based
on the same phenomenon, when specimens are compared at equal maximum stress.
Fhe changes in fatigue life and strength are caused by the changes in the
distribution of the largest flaws and - for finite life - in the propaga-
tion of these flaws.

It is bel?eyed, that the proposed method for the calculation of life and
fatigue limit can be considerably simplified.
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Figure 1 The Three Different Specimen Shapes
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Figure 2 The Distribution of Fatigue Life
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Figure 3 The Distribution of Fatigue Strength Near
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