Fracture 13977, Volume 2

1298

A 1

A A b

"racture 1977, Volume 2, ICF4, Waterloo, Canada, June 19 - 24, 1977

A MODEL FOR FATIGUE CRACK PROPAGATION IN DEFORMABLE
MEDIA WITH NONLINEAR CHARACTERISTICS

D. D. Cioclov*

INTRODUCTION

In the present status of fracture mechanics a wide proliferation is encoun-
tered regarding the analytical means for fatigue crack propagation assess-
ment. The known relationships are essentially empirical or quasi-empirical
in nature, containing material parameters with no particular physical
meaning, parameters which can be estimated only by pertinent testing. It
is desirable that fatigue crack propagation assessment be based on models
reflecting the basic processes, thus minimizing the correlating parameters.

To this aim, in the following, a new model for fatigue crack propagation

is derived based on the evaluation of the cumulative damage in the cyclic-
plastically deformed region at the tip of an extending crack. The proposed
model correlates the fatigue crack propagation rate with the applied cyclic
stress, the geometry of the element involved and the cyclic-plastic pro-
perties of the material.

THE PROPOSED MODEL

In front of a propagating fatigue crack, due to the severe strain and stress
concentration, the material undergoes a cyclic-plastic straining. For the
purpose of the present analysis the material will be considered to have
nonlinear cyclic true stress-strain characteristics of a power law form:

Ao = gohe 1)

where Ao is true stress range, Ae true strain, n the cyclic strain harden-
ing exponent and o, a strength parameter. Equation (1) was proved to
described the cyciic plastic behaviour of a wide class of metallic materials

(1].

The stress and strain distribution ahead of a crack in a nonlinear material
can be estimated, based on the relationship between the effective stress
and strain concentration factors Kg and Ke, considered for the nonlinear
material governed by equation (2) and the elastic stress concentration
factor Keyp:

2= 2
KK = Kep - (2)

This relation proposed by Neuber [2] for a special case of nonlinear media,
was proved experimentally, [3], to be also valid for solids with nonlinear
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characteristic of a power law form (equation (1)). For the range of
variation of stress and strain ahead of the fatigue crack tip, from
equations (1) and (2) results the effective strain range A€:

2/ (1+n)

Ae = AEN(AGel/AoN) (3)

where Aoy is the nominal stress range at the crack tip.

The elastic stress range distribution AGg1 in the direction r of crack
propagation can be inferred based on the fracture mechanics approach [4]
according to:

Ao, = AK(2mr)”¥2 4

where AK is the stress intensity factor range, which general expression has
the form

AK = Ao_[maB(a;L)] "2 (5)

with Ao, the applied stress range in a region remote from the crack; a,
the crack length and B(a,L) a correction factor pertaining to the geometry
of the body in which the crack is propagating. Taking into account that
the following relationship is fulfilled:

Aoy [1-(a/L)] = Ag, (6)

where L is the length over which the crack propagates till the complete
separation in the cross section of the stressed body, putting:

h(a,L) = [1-(a/L)][aB(a;L)]"2 )

from equations (3) to (7) the expression for the effective strain range
distribution for a given nominal strain range Agy, as function of the
crack tip distance r in front of the propagating fatigue crack is obtained
as:

be = Aey[(2r) ¥h(a;1)]%/ (1) (8)

The Ae-r variation is schematically illustrated in Figure 1.

At this stage it will be considered as a basic physical assumption of the
present model, that the distance over which the material is separated in

a cycle corresponds to the distance from the crack tip over which the
strain range exceeds the true residual fracture ductility egpp. In the
representation illustrated in Figure 1, the crack growth for a cycle is
considered to be twice the distance dp determined by the intersection of
the curve for 2epg and that for Ae given by equation (8). The multiplica-
tion factor of two for the distance dr appears from the approximate equili-
brium condition at the crack tip. Thus:

da/dn = 2dy 9
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Part IV - Fatigue : Mechanics

where dp is the solution in r of the equation:
ZEFR(r) = Ae(r) . (10)

But the residual ductility €pgr 1s affected by the prior cumulative fatigue
damage of the material due to the increasing strain as the fatigue crack
tip is approaching. This process can be visualised as a material particle
moving towards a stationary crack tip and thus entering a region with
effective strain range distribution ahead of the fatigue crack (equation
(8)). It results that the straining spectrum which determines the residual
fracture ductility of the material particle is continuously increasing

from cycle to cycle.

Low-cycle fatigue studies [5] reveal that the true residual fracture duc-
tility resulted after sequences of cycles at Aej strain range levels to
which Npj fatigue lives corresponds (i = 1, 2, ..., k) can be estimated by:

®rr T SpL1Z 0N /Np ;)1 (an

where o is the fracture ductility corresponding to the singular loading
determined in a fracture test or resulting from an adjusting procedure
of the low-cycle constant strain range test data, according to a Manson-
Coffin type relationship:

o
)

Aei(4NFi = 2¢ (12)

F
where a is a basic low-cycle fatigue parameter with a representative value
of 0.5 for a wide class of materials. Taking into account that Ny =1

because each strain range appears only once, from equations (11) and (12)
we obtain:

€pp = eF{l—[4;(Aei)”O‘Ari]/[(ZEF)"“(da/dN)]}“ ; (13)
bk

Regarding the fatigue crack propagation as a continuous process from
equation (13), the true residual fracture ductility of the material at a
distance r from the crack tip results as:

Erp = eF{l-Etf(Ae)l/o‘dr]/[(2eF)l/“(da/dN)]}°‘ ) (14)
b of

The integration in equation (14) is easily performed when equation (8) is
considered.

From equations (9), (10) and (14) the fatigue crack propagation rate is
obtained as a function of the nominal strain range:

da N = hz(a;L){1+[2a(1+n)]/[l-oc(l+n)]}a(l+n)(_At:,q/ZEF)(“n) , (15)
or, as function of nominal stress range:

da/dN = h2(a;L){1+[20L(l+n)]/[1—a(l+n)]}u(lm)(AON/ZOF)(1+H)/n.(16)
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It is worthwhile emphasizing that the fatigue crack propagation rate as
expressed in alternative forms by equations (15) er(l6) is determ}ned_by
geometrical, material and loading parameters expl}c1tly gtated, which is
not the case for many propagation rate relationships so far proposed, which
can be applied only after an "a priori" empirical correlation of the per-
tinent parameters for the material involved.

In equation (16) the stress intensity factor range AK can be made explicit:
- . 1+n)/n
da/dN = C(o,n) [h(a;L)] @ 1)/n[Ak/(W1“20F)]( (17)

where C(a,n) = {1+2a(l+n)/[l-a(l+n)]}a(l+n) is a parameter which erends
on & and n is illustrated in Figure 2. It is apparent that equation (17)
cannot be reduced to the well known Paris form due to the crack-length
dependent parameter h(a;L).

At this stage of the analysis it is appropriate to gvince that the influence
of cycle asymmetry can be accounted for by considering the corresponding

counter part of equation (12) in the form proposed by Ohji, Miller and 4
Marin [5]: &

s S b M

1/a 1/0,00
Cmax = 26p/ [N (1-R) P+ (14R) T/ (18)

where R = ep; /e is the strain ratio, with “min> Epax the minimum and
maximum true strain. Based on this relationships, following the same
procedure as the one leading to equation (16), we obtain:

Y2 a, ) (1ery Y% (emy % fa o) Y (1emy 1

da/dN = 27
(19)

- i 1 /
© a(l+n)/2(1-a(1+n)] *0*D) Oppax/op)

where the maximum nominal true Stress Onpax has been made explicit.

DISCUSSION

According to the proposed model the fatigue crack propagation rate
depends on:

a) the geometrical function h(a;L) which concrete analyFica{ form
derives from the analytical expression for the stress intenS}ty factor K,
corresponding to the shape and size of the material element involved and
to the particular loading type imposed.

b) the cyclic-plastic properties of the material,.as determined in a
low-cycle fatigue test, i.e., the cyclic strain hardening exponent n and
the Manson-Coffin coefficient a.

¢) the fracture properties as expressed by the true fracturg dQCtlllty
“F Or the true fracture stress O determined in a monotonic static fracture
test or by a correlation procedure from the low-cycle fatlgge te;t data.
[t appears that due to the fact that ep and O refer to a S}tuatlon of tri-
axial state of stress and strain at the crack tip, the pertinent low-cycle
fatigue test or static test data should be determined in conditions of
severe notch concentration.
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d) the loading intensity expressed by the nominal strain range Agy
or stress range Aoy and the cycle characteristic as expressed by strain
(or stress) ratio R.

In order to check the validity of the fatigue crack propagation rates
derived from the proposed model, tests were performed with carbon steel
of 52 type in the as received condition loaded in plane alternate bending.

The test specimens were 30 mm wide and 2 mm thick with a 2 mm long and 0.2
mm wide central slit. The crack propagation was measured under a micro-
scope.

The experimental results obtained are plotted in Figure 3 in appropriate
coordinates which enable a linear correlation to be made based on equation
(16). The line slope determines the cyclic strain hardening exponent n
while the ordinate intercept determines the true fracture stress Of.

This comparative analysis was extended to some known experimental results
obtained by Frost [6] with a carbon steel with 0.22% C, subjected to cyclic
alternate axial loading, and by Radhakrishnan [7] with a B-8 type stainless
steel heated to 1050° C and oi] quenched, subjected to fluctuating tensile
loading. The analysis of these experimental results, as illustrated in
Figure 3, evince the linear trend predicted by the theory, with resulting
cyclic strain hardening exponents and true fracture stresses in line with
representative values for the materials considered.

CONCLUSIONS

A model for fatigue crack propagation in solids has been derived based on
the evaluation of the cumulative damage in the cyclic-plastically deformed
region at the tip of an extending crack. The proposed model correlates

the fatigue crack propagation rate with the nominal stress range, geometric

the solid. It may be remarked that the parameters involved in the present
fatigue crack propagation model have a clear physical meaning, in terms
of the basic plastic and fracture properties.
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ADDENDUM
In the following the detailed algebra is given concerning cquation (15)

and (17): Cumulative low-cycle fatigue damage relationships (equation (11)
in the text):

1303




Fracture 1977, Volume 2

- - 3O
€rR = EF(I ?Ni/NFi) s (A)
Manson Coffin equation (equation (12) in the text):
Ae, (4N ) = 2¢ (B)
i Fi “F

From (A) and (B) results:

- 4 1/ o
i e v G e M &
(ZEF) i
Because Ni appears only once, we have:
By
. '—41/E 5 (Aei)l/o‘o" D)
(ZeF) i=1

If Ar is the mean length over which the crack propagates in a cycle then:

Ar ~ ad%
and thus:
Ni 1/a da Ni
'151 (Aei) Ar.l - -y E (Aei)lfz (E)

From equation (D) and (E):

N,
4 1 . 1/a, Ja 4 1
£ = g 1 - —————— L (lde.) Ar. > g l - —
FR F [ (ZEF)l/a da/dn i=1 i J F [ (ZEF)l/a da/dn
s (Ae)”“dr]“ (F)
T

Accounting for equation (8) in the text the integral in equation (F) is:

1

1
i 2 1 -
r (Ag)l/adr - T—% (AEN)l/aCZI_)a(lm) % a(l+n) ©)
r

At fracture:
.;.EFR(I‘ - dR) = Ae(r ~+ dR)

with Ae from equation (8) in the text results:
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4 1 2 - 1 L
2e = a(l+n) (h2?\a(T+n) 1/a -
1 1/a da/dn 1-o/(1+n) <§{) (AeN) dR a(l+n)|_
(2ep)
B |
- h%\ n+1 n+1
AeN (2 > dR (H)

. . ~ da . : :
Considering ZdR T (see explication in the text - equation (9)), equation

(11) can be put in the final form:

da_\of),  2a(ien))@(irn)fAeg)(ne )
dN 1-2a(1+n) EE;
which corresponds with equation (15) in text.
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