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A MODEL FOR FATIGUE CRACK INITIATION IN POLYCRYSTALLINE SOLIDS

J. W. Provan*

L. INTRODUCTION

As is well known, fatigue is a primary cause of mechanical failure in com-
ponents being elastically stressed. Numerous efforts have been made to
analytically describe this important phenomenon and the resulting litera-
ture is correspondingly large. A good review of the situation, especially
from the applied point of view, is the recent survey [1].

Restricting attention to probabilistic techniques, the mathematical formal-
isms utilized in the present work, although applied in a novel manner, are
common in reliability studies in design [2] and in probabilistic structural
analysis [3]. Perhaps the closest work along the lines developed here is
the study carried out by Murzewski [4] who described the cumulative damage
in solids umder random stress. Esin and Jones [5] also presented the out-
line of a theory of micro-inhomogenity of stresses and strains which result
from the microstructural plastic properties of engineering materials. Cer-
tain aspects of their work are also allied to the present investigation.

The existence of distributions rather then deterministic values of both
displacements and strains, and hence stresses, in polycrystalline materials
being subjected to an externally applied load is firmly established. For
example, in [6] random displacements and rotations of individual grains of
aluminum embedded in an epoxy resin were observed using a combined holo-
graphic and X-ray technique, while in [7] experimental data was. used to
plot both probabilistic density functions and correlations of plastic de-
formations in quasi-isotropic polycrystalline aluminum and copper.

The most common application of probabilistic concepts in the study of

fatigue is the application of specific distributions to describe the observed
scatter in the number of cycles to failure. For example, Bloomer and Roy-
lance [8] and Korbacher [9] reviewed the applicability of the log-normal,
normal, Weibull [10] and extreme value [l1] distributions used to describe
the number of cycles to failure in polycrystalline aluminum and copper
respectively. Generally they found that censored or truncated forms of

these distributions give very good descriptions of the observed failure
distributions especially near their 'lower tails'.

Recently, a probabilistic micromechanics theory, developed by Axelrad [12]
and Provan and Axelrad [13] has led to the prediction of elastic microstress
Gaussian probabilistic measures, & , where £ indicates the microstress,
in realistic models of polycrystalline copper and aluminum subjected to
uniaxial tension [14]. These distributions were obtained by investigations
of: (i) the mechanical response of dislocations [15]; (ii) the computer
simulation of the elastic behaviour of various grain boundaries in copper
and aluminum [16]; and (iii) the displacement distributions presented in
[6]. It was found in [14] that, for a specified dislocation density and
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grain boundary mismatch angle distribution, the microstress distribution
varied with both the mean size of the crystalline microstructure and the
distribution of grain boundary orientation with respect to an external
coordinate frame.

The initial results of a new probabilistic technique of generating fatigue
crack initiation information based solely on polycrystalline microstructural
data, without having recourse to fatigue testing, is presented in this
paper. Specifically, in Section 2, each of four microstress distributions,
two for copper and two for aluminum as derived in [14], is in turn consid-
ered to be the distribution of microstress amplitude existing at the first
peak stress of a sinusoidal tension-compression test of such materials.
Following this in Section 3, a Monte Carlo simulation of random loading
histories is presented which gives more directly applicable results. These
results are discussed in Section 4. Throughout this investigation, Gaussian
distributions of the random variables involved are assumed to apply. These
distributions are described by the pair (1;V) where u is the mean and V

the variance of the random variable involved.

2. MICROMECHANIC FATIGUE

The major aim of this present study is to develop a model or theoretical
description of fatigue damage in polycrystalline solids. The major pre-
mise is that distributions of stress and strengths exist within polycry-
stalline solids and that an interference between these distributions during
stress cycling causes fatigue damage to accumulate within these materials.

Before starting into the analytical developments of the present study, it

is instructive to clarify certain aspects of fatigue from a micromechanics
point of view. The onset of damage in a stressed ductile metal is generally
associated with a free surface, and the present investigation is concerned
only with metals in which the fatigue cracks are initiated at such a free
surface. One of the basic concepts of micromechanics is the mesodomain.

A mesodomain has three complementary interpretations. The first is that

it has a Gibbsian ensemble of microelements within a region of the specimen
on which the boundary conditions are assumed to be deterministically known.
The second is that each mesodomain contains a large number of microelements

or grains so that certain aspects of the law of large numbers may be applied.

The third interpretation is perhaps the most important from our point of
view. This says that the statistics of the variables involved within the
mesodomain are position independent. With this in mind, the only mesodo-
main we are interested in, in the present study, is the surface mesodomain,
which is defined as a layer of the surface material within which the sta-
tistics of the random parameters are position independent. The problem of
crack propagation is not being attempted here since the mesodomain is no
longer the same near a crack tip. The mesodomain contains M microelements,
@, & =1, ..., M, M large. At time t = 0 there are no damaged, i.e., plas-
tically deformed or fractured, microelements and all contribute to resisting
the external load. Distributions exist for the microstress, yield strength
and ultimate strength of the microelements. If a microelement is stressed
beyond its yield strength, residual stresses remain, while if it is stressed
heyond its ultimate strength it is no longer effective in resisting any
<ternally applied stress, i.e., it ceases to exist for the purposes of
this analysis.
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.1 stress Interference with Yield Strength - The Effect of Residual
Stresses

With reference to Figure 1, the residual stress effect is incorporated into

the model through the interference between the ith loading microstress dis-

tribution & €1, with the yield strength distribution & X, where %X indi-
cates the vield strength of the oth microelement. The probability that any

nicroelement o be plastically deformed at any peak stress is the probability
that ‘£l exceeds ™X. Thus a new random variable, ki, is defined as:

== £ 0

md has the Gaussian density, ij* provided X and Sl are both normally
distributed, described by:

01?2
b, ilt) = L exp Bk u
Ll = 5 i =
. sz(i 2 Vi i

N@th its appropriate subscript, p, indicates the probability density func-
tion of the random variable involved. Using simple transformations the

fraction of microelements which become plastically deformed on the it
stress, Qi’ is given by:

By = Mpp o Vei = Vy * Vei - (2)

2

0 Ki .2 ; . :
Q =/ pi(T)dT = I exp {-zl /2} dzb o kb o= e, (3)

oo - v

The residual stress is related to the amount by which a stress exceeds the
yield strength in a material. This is a manifestation of the microscopic
phenomena of dislocation generation and pile up at grain boundaries resulting

in an increasing amount of residual microstress and local or micro-work

hardening. Although the process is macroscopically elastic, microscopically
it is thermodynamically irreversible. To model this effect it is assumed
that for the transition from one stress state to the next the following

relations hold:

o, i+l o i+l L
= O

g . 1<a<M-I m
=1 !
o ; . i ; (4)
o, 1+ (
gitl _ogislydyl 0 Mo 3 onl<a <M
res s P
j=1
wherg m is the number of microelements plastically detormed during the jth
loading, “oJ indicates the stress in o due solely to the externally applied
load, H1 = ugl/[p;l[ and pieg iS a measure of the residual stress effect
given by: 7
3 0
1 1
Bres = (00 I tp i(DdT| . (5)
i -
Based on (4) and (5) it may be shown that:
) _ ) B i i . _ et 1 12
Heirl = Hgitl 7 H o 3 Veiel = VOi+1+(1:/} ),/?* Hres (6)
s i . 5 : ; . P
where S = Qi in this case where there is no intertference with the

ultimate strength distribution.
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!.2 Stress Interference With Ultimate Strength - Accumulation of Damage

\gain w%th reference to Figure 1, accumulation of damage at each load is due
to thealnFerference between £! and the ultimate-strength distribution, =
fhere_ % indicates the ultimate strength of the a microelement. The érsi
n§b111Fy that any microelement, o, be fractured, thereby becoming ineffec-
tive, is the probability that “£l exceeds *Z. Again a new random variable
defined as follows may be introduced:

r..::_i
& =B s s (7)

rhe equations already introduced, namely (2) and (3), are again applicable
w+th ¢~ replacing k!, Z replacing X, Pj replacing Q;, and Z! replacing ki
w1Fh the understanding the P; is the fraction of thé effective microelemegts
which are permanently damaged at the ith stress.

Cumulgtive fat%gue damage is modelled mathematically as follows. Consider
the first loading. There are no permanently damaged microelements and
hence the mean and variance of the microstresses in the surface mesodomain
are:

Hel = M1 s Vgl =V . (8)
At the first loading, a fraction P, of the microelements become permanently
damaged. Hgnce, the number of damaged microelements and effective micro-
elements, after the first load is respectively:

1o 1 = M2 = WM - il
m PiMl = PiM, Mi=M-nm'. (9)

. 2 x
Slqce Mi is less than or equal to M the average stress in the microelements
before the second externally applied load is increased by an amount:

u

- o (@728 TE N .
g2 = My2/ (1 P)+ F 'H Hiog 5 (10)

the firs§ term being the Robotnov damage term of fracture mechanics. Simi-
larly, 51nce‘the ngmber of microelements rendered ineffective during the
second load is: m° = PzMe, the mean stress at the third load becomes:

5
V4

U3 = P )+ &7 2H2,2
£3 uoa/jzl(l PJ)t/// Ho g (11)
Extending this to the ith load then:
i
L T (1-Q)
~1 & L 4
L g e -1 = ; i j= J
gl = Ty # &=Lt u;e; where 9227'1 =g -d3 (12)
> 1
T (1-P.) (1
) -P.
j=1 J j=1 J)

Concerning the criterion for fatigue failure, the surface mesodomain is
|;Auqu to fall when the mean stress in the microelements exceeds the
wean of their ultimate strengths, i.e., if:

Mei 2oz (13)
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lJsing the above equations, an iterative computer programme Was devised
which had as inputs the Gaussian pairs: (UEO; VEU)’ (ux, Vy), and (u=s V=)
Restricting attention to a sinusoidal loading, the index i identifies the
peak stress, i =1, ..., 2N, N being the number of cycles to either fatigue
crack initiation or to the failure of the surface mesodomain. With this
interpretation the curves shown in Figure 2 were obtained for the idealized
polycrystalline solids discussed in [14]. Here, x is inversely related to
the average size of the microelements and ¢ is the probabilistic measure
of grain boundary orientations. The values of (ux; Vyx) and (uz; V=) are
taken from [1] and modified as indicated in [4], by utilizing the coeffi-
cient of variation (C.0.V.).

3. MONTE CARLO SIMULATION OF RANDOM LOADING HISTORIES

Instead of subjecting the mesodomain to a sinusoidal loading a more realistic
and certainly more practical situation would be to consider a polycrystalline
solid subjected to a random stress history. Such stress histories can be
digitized using standard techniques and histograms, plotted as indicated on
the ordinate of Figure 3, may easily be devised. Such histograms were curve
fitted, in this case to form Gaussian density distributions defined by

(ug; VO) from which Monte Carlo methods were used to generate various extern-
al loads, ol. In this case, i =1, ..., N identifies the Monte Carlo simu-
lated load and again, for each such load, the relations presented in Section
2 were invoked. This process was repeated 50 times and results similar to
those indicated on the abscissa of Figure 3 were obtained.

Figure 4 shows the results for the idealized copper and aluminum introduced
in [14]. Using the values of (uy; Vy) and (uz; Vz) given in [4] and a more
realistic C.0.V. of the microstress distribution of 0.1, the graph indi-
cated in Figure 5 is obtained for steel.

4. DISCUSSION AND CONCLUSIONS

The results indicated in Figure 2 clearly show that changes in the micro-
structure of polycrystalline solids have, by the method presented in this
paper, a quantifiable influence on the number of sinusoidal loading cycles
to crack initiation. Furthermore, the results shown in Figures 4 and 5
indicate the wide variety of loading situations that may be covered by this
procedure. Finally, Figure 5 shows that for real materials the technique
gives the same characteristics as those obtained by experimentation.

The above information has been obtained from microstructural information
only and not from macroscopic fatigue experimental investigations. Their
qualitative agreement strongly motivates further investigations of the
microstructural influences on the fatigue characteristics of polycrystalline
solids.
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Figure 4
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The Monte Carlo Simulated S-N Curves for Steel
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