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A MICRO-PROBABILISTIC APPROACH TO THE DUCTILE DEFORMATION AND
FRACTURE OF METALS - I. PRELIMINARY INVESTIGATION

Y. M. Haddad and R. Sowerby*

[NTRODUCTION

I'he conventional approach to the problem of deformation and fracture of
metals is usually based on models which disregard the existing microstruc-
ture of the material. In this aspect, continuum and modificd continuum
models have been developed. These models are deterministic by definition
and imply, within the restrictions of continuum mechanics, that all the
basic quantities involved in the deformation process are continuous varia-
bles or functions of such variables which have, at least, continuous first
order derivatives. Due to the existence of defects in the material and
when these defects become significant, the field quantitics fail to be
continuous at the separating boundaries. Thus, it becomes necessary to
consider these local effects as an integral part of the problem and to
study the nature in detail, particularly in relation to the deformation
process of the material systenm,.

'he present approach has been mainly aimed at formulating the detormation
process in materials with strain history and having a discrete, and defec-
tive, microstructure. For this reason, the relevant ficjd quantities char-
acterizing either the geometrical or physical properties of the microstruc-
ture have been considered from the onset as random variables or functions
of such variables [1, 2, 3]. The approach follows the concepts of the

micromechanics theory of structural media due to Axelrad |1, 3].

I'hroughout the analysis, vector and second order tensor valued quantities
May carry -~ or ¥ sign under the symbol respectively, However, third and
fourth order tensors may be respectively indicated by % and = under the
symbol.

LOCAL RESPONSE BEHAVIOUR

In order to describe the mechanical response of a4 medium which has a dis-
crete microstructure, it is necessary to consider the loeal response
behaviour which can differ considerably from the MACroscopic response con-

sidered by phenomenological models. An clement of the medium is defined
45 the smallest region of the microstructure that represents the mechanical
and physical properties of the material at the microlevel, This element

Ls chosen arbitrarily to represent the response behaviour of an individual
yrain (with the probability that the grain can be continuous or defective),
as well as the bonding response within the wrain boundary of the two
matching grains. The latter is regarded, in the present stage of the
inalysis to be perfectly bonded.
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The deformation kKinematics of an individual defective element "q'" is

hown in Figure 1. Denoting the incremental continuous displacement within
’ﬁf srain by A™J;, the incremental extension of the tip of the crack by
VG and the incremental deformation of the binding within the grain
boundary bhetween grains "a'" and "B" by AG dk. The overall incremental
tisplacement within the element can be written:

A% = O o o o, aB, a L uB
AT, AiI(l K) (A C, + 4 up) o+ AkI R (1)

Jhere,

.. = denotes the transformation from the grain coordinate
frame ayi to the external frame Z1.

A K= denotes the transformation from the grain boundary frame

-

Xy to the external coordinate frame i

and the parameter %, ¢ < S < 1, has been introduced to account for
relative geometrica] contribution of the grain to that of the grain
bhoundary.

(1) the single grain is continuous, hence AJCi =0

(ii) the single grain is defective by the existence of a sharp
crack. Thus, the crack growth increment is predominant,
Loe., A%y >> A%U; and A%U; may be neglected.,

[ntrodgc?ng now the probability that "g" is continuous, say %*p,, and the
PrObabll}tY “p2 that the same element is defective, one may express the
overall incrementa] displacement within 'a' in terms of probability in the
following form:

[N
=

(1-%) %Py . A%, aPZaAj 8%C,] + *Bp

where the transformation matrix uA~I indicates the orientation of the
§ra§k coordinate frame %y with reSpect to the external frame Z1 as shown
in Figure 1. The definition of the probability ®P, and, hence, the
Vruhnbility aPz will follow subsequently in Section 3. In order to esta-
blish, however, the form of constitutive relation corresponding to (2)

we consider first the incremental displacement Aan.
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Continuous Grain
= AHUOUS Lrain

The strain will be taken for simplicity as a linear one, thus, the strain
increment within the grain can be expressed as:

8 8%, = % ) (3)
where a? is the Tonti-Operator [4] and Axg is regarded to be given by:

2% = p% (&) | % (@) (4)

The plastic strain increment is assumed to be given by the flow rule as:

(p) _ _
Aeij =Ty AN Tij af/BEij (5)

in which £ij is the stress tensor, f is the yield function and A is a

scalar function. The yield function is assumed to be given by the plastic
wmkW@,.Le”

(P)y _ (p)
E(Eij, eij ) = F(w/y | (6)

Assuming a linear incremental constitutive equation then,

a. . ,a - O o _ a,a o
AYE 2 oA £i; Aiikg Dy = A NCRDRE (7a)

Qe

The following expression for the matrix A,

ijkg can be derived [2, 5]

-
X = E. . - T EX 1 /S T2 71
AiJk2 Eljkm H 544 Ekz/3 & (F'/2u + 1) , (7b)
oF . )
where F' = » M = shear modulus and E.. = elastic tensor modulus.
aw (P) ijk&
In arriving at (7b) the von Mises yield function has heen assumed, 1.e.,
1 £ A} 1 T2
==& £, = = 8
£ 2 ~ij 513 3 & . (8)
Grain Boundary
So far as the bonding effects, between the grains "o’ and "'B", are con-
cerned, the most suitable form can be expressed in terms of a Morse func-
tion [6]. The analytical form of this function which will represent the

3-dimensional case can be written as follows:
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43, -‘,L’;,. ‘LLB < 5

V= Y olexp(-2b [77d]) - 2 exp(-b ;de[)} , (9)

) By, . 5 s : ; : 5
nowhich Yo is the equilibrium interaction potential, b is the Morse
constant and 984 is the deformation in the bond. An expression for the

fateraction incremental stress can be formulated as follows:

A%L’S o

£= "8 a4, (10)

i B . . . . i ;
where B is a material tensor operator tor the bonding interaction which

takes the form [2, 3]

i -2p? “By )
U o fe o B8, OBy AB-i| (11)
uBa - =

178+ +]
ll

13 o ; aB aB, .
where "“a = area per bond, Sn = outward unit normal to “a, and Lok is
4 unit base vector associated with the local co-ordinate frame in Figure 1.

Defective Grain
————=aVE brain

lhe presentation of the relation between crack extension increment Aqg,
original crack length %C and the variation of the microstress within the
individual grain, i.e., A%, is based on the work of references 7, 8 and
9. The kinematics of crack growth are shown in Figure 2. In reference 9
to avoid the problem of a strain infinity at the crack tip, a fracture
criterion was based on an average strain spread over a very small region
of radius ]g| ahead of the crack. The latter may be referred to as a
unit distance ahead of the crack tip, i.e., |p| = 1, with the understanding
that this unit distance is very small compared to the grain size or even
in comparison with the crack length. 1In order to express the building up
of the strain history at an arbitrary point, say at a unit distance

fgf = 1 from the tip, one has to consider the strain gradient caused by
the variation of the local stress during the crack growth. To this
effect, the gradient of the microstrain, obtained when the crack has
reached to within one unit distance of the point in question, may be
specified by both the local coordinates of the point, i.e., Y, and the
current length of the crack [c|. The gradient of microstrain has been
building up ever since the plastic strain first swept over the point in
question and may be described by [2, 8],

e
. | |
2% . leh <, [3% I
- a a. "t ./F [0 an "
3y cl & 3y i,
4 ¢ J c| {
a
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in which n indicates the crack length variable*. The solution of (12)
however, will be based on expressions for the microstress and microstrain
Ln terms of the geometry of the crack and local coordinates. This solution
may be written in an operational form as,

JAg = "1 . (13)

Constitutive Relation for the Structural Element

[n view of equations (2), (7a), (10) and (13), one can write the response
relation of a structural element in the following operational form:

ﬂdf _ [(l—iK){uPI ug @§_,(§) . (l_xpl)aé ag (E)} + 1d£ aKaBKaBE_l]Aug :

- ug (E) Aug . (14)
Note,

A”Bgij = By Aagij , (15)

aB, . < . L ; :
where SK 1s an etfective binding ratio [3]

I'he response equation (14) may be, also, written explicitly in terms of
the stress increment as:

o

A% = " leeya% (16)

where in (14) and (16) JI (E) may be referred to as the mitterial operator

for the structural element [3, 10].

IRANSITION TO THE MACROSCOPIC RESPONSE BEHAVIOUR

Since the material system that occupies a given physical domain is regarded
in the present approach as a discrete medium, a transition from the dis-

crete description to the macroscopic one must be attempted. The concept
of an intermediate domain between the microdomain and the macrodomain is
introduced and specified by the requirements mentioned in {3, 10]. The

choice of the intermediate domain is generally guided by the geometrical
properties of the microstructure, as well as the boundary conditions
imposed on the material specimen. In the case of a two-dimensional model
of the material under uniaxial loading in the 7, direction, uas shown in

" As represented by the first term on the RHS of e¢quation (12), there is
P y i !
an initial strain gradient at this point when crack starts to grow, i.e.,

at!g[ = |c]. Then, the gradient is increascd further by the strain
occurring during crack growth. This is represented by the first term
under the integral sign in equation (12). The second term represents a

further increase in the strain gradient due to any change of the micro-
stress within the grain, i.e., og.
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teure 3, the intermediate domain ™M can be arbitrarily specified by ;no )
‘“élun bound by two theoretical scanninglines S, - Sy, S, -.Sz, perPen icu
bar to the direction of loading. The width "yu" of §uch an lntermed}ate
fomain "M", in the direction of the load, is determined by the Tequ1rement
"hat this domain must contain a statistical number of element§ a and,
ee, statistical principles can be applied.l One may es‘tabllsh(,i ior
‘istance, the internal distributions of the m1crodeform§t10n§ an‘b he o
tierostresses.  Letting MP{AMI} represents the probability d1str% ution

! vomponent of the incremental displacementivecFor éuwl.over an 1nte??§;n
fiate domain "M", then the mean value of this distribution can be wri

M M - oa M } an
TeAw> s <Awf> =L A W AP {Awf »

I is intended in the above, and the sequal given

where no summation over ‘ )
: one can also write the expres-

by an overbar. Referring to equation (14),
sion for M<Aw>, in general, as:

_ M<[(1-GK){QP] uéué—l(é) . (l_apl)aé ag (5)} +

. xBA o uBK uB@_ll A1g> ) (18)

lhe variance of the distribution of microdeformationo zgn, however, be
i i i i W=, i.e.
expressed by 1ncorporating the fluctuating portion of T 1

Y M
M/ALTA$T> = 1 (0%g - M) 2 Plows} ,

and AL—»= Aaw— - M<Awf> . (19)

. ; 1
With reference to the stress-deformation equation (16) for tgo St?EEE?;i
element, the expression for the average value of the stress distri

within the intermediate domain may be written as:

(€]} + BBy aB ol T % (20)

e
RECs)

Mo 2 M E—
5> = I (A &y - & o)A P(A &7
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*
A e = AT o aM_ (21)

of the microstructure.
due to that the solution of (12) and, hence, the form of the operator
o (£) in equation (13) is obtainable [7, 8] in the case of pure shear.

For purpose of incorporating eéxperimental measurements of microdeformations
and in order to establish the connection [2, 3] between these measurements
and the macroscopic values, j.e., equations (20) and (21), the surface of
the intermediate domain may be subdivided into scanning areas,

AA =1, 2, +++» N) as shown in Figure 3. The size of each scanning area
may be taken as (M X u). The definition of the scanning area within the
intermediate domain serves further in defining a void ratio AP in this
area. The latter may be taken as;

B = afk , (22)

in which "a" ig the area of cracks or voids within A. Referring to the
above formulations, it is assumed in the analysis that:

Pr=1-". (23)

CONCLUDING REMARKS

The purpose of this paper has been to provide a general formulation for
the deformation Process in materials where the microstructure is treated
as being discrete by including the probability of cracks or flaws to exist
within the material. A three dimensional analysis has hoap presented
which can be applied in Principle, to a wide class of "defectiye" ductile
materials. However, it is recognized that ga rigorous evaluation of various
quantities in the analysis will often Prove impossible if predictions are
to be made for real materials, with complex microstructurux, subjected to
multi-axial loading. However, it js believed the work offers some sug -
gestions for accounting for the influence of certain structugal features
of a material on the deformation and fracture process.

In the first instance some simple experiments could be conducted to test
out the theoretical model. For example, one could look at the influence
of a controlled but varying, grain size on the response of a specimen
under uniaxial and biaxial loading conditions.

On the basis of the Present approach it is also suggested that the analysis
could be extended to include,

(i) Probable effects of failure or breakage of the binding within the
grain boundaries. Thus, a correlation between the progression of failure
of the grain and that in the grain boundary may be established.

(i1) Space and time evolutions of the distribution of internal micro-
deformations and, hence, the evolution of the corresponding distribution of
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tnternal stresses., liency by specifying, for instance, a limit of deforma-
tion within the individual structural elements, it may be possible to
cstablish a fracture criterion within the intermediate domain. Considering

that the macroscopic specimen contains an innumerable number of non-
intersecting intermediate domains, [1, 3, 10] the location of earliest
tracture site of the specimen may be predicted.
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Flgure | Deformation Kinematics of an Individual ""Defective" Structural
Element 'y
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Figure 2 Kinematics of Crack Growth in an Element "o

INTERMEDIATE
DOMAIN

s ™

b
UNIT WIDTH \(\\<L— :

s sy
e
9 N ~ TT’
i
THE 8 - %
| THE - -
FE: ;
Fixeo ScaNmiNG | || GC| r— - FXTEANAL
AREA A \
* —-——%?g;—- Aq (= (UMIARIAL S
/) e
Zp 7 AT |
i "
i gj j-
s| s -
i
‘ “<QpMo Moy 5
(UNDEFORMED) ( DEFORMED)
Z3
Figure 3 The Concept of the Intermediate Domain in the Macroscopic

Specimen
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