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THE TMPACT TESTING OF POLYMERS - A REASSESSMENT

J. G. Williams; and M. W. Birch*

ABSTRACT

The elastic analysis of the conventional impact test is presenmted and it
is shown that for wunstable failures the enerqy absorbed must be expressed
as a particular function of crack length, ¢, rather than the conventional
ligament area, if values of Go are to be deduced. It is further shown
that the conventional corrections for plasticity effects and plastic
collapse analyses may be applied to the data. In addition, kinetic energy
effects are examined and suitable corvections suggested. Experimental
data for several polymers is given which shows that unstable failures only
are observed and that both small and large scale plasticity effects occur
in polymers.

INTRODUCTION

Polymers are particularly susceptible to brittle fracture when subjected
to impact loading. Materials which give tough behaviour at low speeds
frequently exhibit brittle failure under impact conditions and naturally
this has led to an emphasis on impact testing in the plastics industry.
The conventional Charpy and Tzod pendulum tests have been taken over from
metals testing in a suitably scaled down form. Of the two, the Izod test
is by far the most popular and the "Izod Number', the energy absorbed in
fracturing a standard dimensioned specimen, is the most widely used mech-
anical property in plastics testing.

It is usually appreciated, however, that the test and the interpretation
of the data, is subject to considerable limitations. There is, for ex-
ample, only limited correlation between Charpy and Izod results.and there
is no direct way of using the data in component design (for a comprehen-
sive review see [1]). The numbers obtained are known to be dependent on
specimen size which makes their use in design uncertain. Part of this
difficulty arises from using only a single specimen geometry but in add-
ition the practice of measuring the energy to failure is regarded as un-
satisfactory.

The use of energy to describe impact failures is clearly dictated by
convenience but there are uncertainties since one is measuring the sum of
several possible effects and much information is inaccessible. The
desirable procedure of measuring loads during fracture has therefore been
pursued by many workers (e.g., [2],[3}), both from a simple desire to ex-
tract more information from a test and, more specifically, for use in
fracture mechanics calculations. The difficulties are considerable and
stem mainly from the loading times being comparable with those for stress
waves to traverse the specimen. This results in severe distortion of the
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recorded loads so that very large corrections are necessary to arrive at
any @easure of fracture load. In addition, the experiments require ex-
pensive equipment and skilled operators and are unsuitable for routine
work.

There is scope for a re-appraisal of the situation since there has been
some success in applying fracture mechanics to the conventional energy
measuring test [4,5,6,7]. This idea will be developed here together with
methods for coping with plasticity effects during fracture. In addition,
some consideration will be given to the problem of correcting data for

kinetic energy effects, which bedevil the testing of low strength materials.

LINEAR ELASTIC THEORY [8]

Tt will be_assumed initially that impact failures may be described in
terms_of linear elasticity so that when a load P is applied to a specimen
containing a crack of area A (sce Figure 1(a)), a deflection A is produced
such that:

A = CP (1
wherg C is the compliance of the specimen and is constant for a given
%?ack area. Thus, there is a linear load deflection curve as shown in
Figure 1(b). Suppose now that the crack grows by a small area SA and the
load changes by 6P and the deflection by 6A. The initial stored elastic
energy is given by:

Uy = %—P A
and the final stored energy by:

Us = 5 (P + 6P) (A + 8A)

In addition, there is external work performed given by:
Sp

W= <P + 5—) 84 2
The net energy released by the system is therefore:

SU = W + Uy - Uy
and substituting for W, Uy and Uz, we have:

SU = é (P 8A - A SP) (3)

Th;re will be a change in C because of A changing by SA, so from equation
(1):
SA = C &P + P SC (€]

By combining equations (1), (3) and (4) we have two results for the energy
release rate per unit area:

du L., dC 147 | ac 5
dA < 3 TN TN (33
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Notice that these results are independent of either load or displacement
change.

If fracture occurs when:

®=q, (6)
then G. may be determined for a given test if C is known as a function of A
(and hence dC/dA) when either P or A are determined at fracture. Clearly,
this is an instantaneous conditien since it refers to the current loads
and deflections. 1f it is assumed that G. remains constant throughout the
crack growth then clearly dU/dA must be maintained at Ge throughout. If
a crack grows from area A; to area A, under this condition, then the total
energy required is:

U=G.(A2 - A1) (7)

If a crack is propagated under these conditions in an impact test then,
assuming that the machine measures the energy absorbed by the fracture,
the conventional procedure of estimating G by:

will give a satisfactory result.

While G must be maintained throughout crack growth, this total energy
condition will not always hold. 1If, at crack initiation, dU/dA can be
maintained at G. at constant displacement, then the crack will propagate
without the addition of external work so that the energy absorbed is that
stored in the specimen at initiation, i.e.,

U =3P A=3p

and from equation (5):

. C B . T
Ug = hc (dC/dA) a GC L (8)
The constant displacement, or unstable condition, will pertain until it
can no longer be sustained at which time external work must be imparted
resulting in stable crack growth thereafter. A criteria for instability
may be obtained from equation (5) in that a crack will be unstable if:

2
Y50 at "l‘i =G (9)
dA? i ¢

with the limiting condition of d”U/dA? = 0. 1f this is to be sustained

at constant deflection, then from equation (4):

L dp i dC

e B B SR N o

p dA C dA

and from equation (5);

du_ e

_ 1
= p o ==
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For P # 0 the crack will be unstable for:
d*c/dA%. C

(dc/day?

From equation (8) we may introduce the function  and the condition becomes:

> 1

[

a0
dA

(i.e. the energy released Gc dg > GC dA that absorbed).

< -1 (10)

Three conditions are feasible using this criterion as shown in Figure 2:

1. Here the crack is always stable and d/dA > - 1 at all times. The
stored energy at initial crack growth (the shaded area) is aug-
mented throughout by external work to give the required work
G(_ {(Ay - Ayd.

- In this condition d{/dA < - 1 throughout propagation and the
crack is completely propagated by the stored energy. In this
condition Ge 2 > Ge (A2 - Ay) and the conventional procedure
of determining Ge from U/(Az - Ay) is not valid and should be
replaced by W/Q.

Do

3. di/dA = - 1 at some condition during unstable growth and crack
arrest will result. Subsequent external work must be supplied
to effect propagation so that finally U = GC(Az - Ay) as in the
fully stable case.

ft should be noted that the limiting condition d§)/dA = I is equivalent to
a total energy balance for a constant GC case, since by integration:

2= - A+ H (H is a constant)

Thus, the total energy, u,:

Up= G, 2= G, (- A+ H)

For full propagation A = A; for §} = ), and A = Az for £ = Q,, and hence,

i

U = GC (2 - Q2) G (Ax ~ Ay)

C

i.e., the condition d*U/dA? = 0 is identical to that of:

(1 - Q2) = (A - Ap) (11)

THE CHARPY TEST

The consequences of these general concepts will now be applied to the par-
ticular geometry of the Charpy test shown in Figure 3. (Although the Izod
test is more widely used, it is considered to be basically inferior to the
Charpy because of clamping effects). If the crack length is a, then the
crack area is:

A =B a
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which may be conveniently non-dimensionalized as:

.
B D

The energy required to propagate a crack from x; to x, is therefore:
U = Gc B D (x, - x;)

the initiation condition may be written in terms of:

Q= qerar = B D EESEE': B D¢
50 that equation (11) becomes:
P1 -~ b2 = xp - xg
fuet b1+ X3 = dy + Xy (12)

¢ has been computed for the Charpy goemetry [6] for various L/D ratios and

these are shown in Figure 4 plotted as ¢ + x as a function of x (the broken
lines are extrapolations of numerical data) . For complete fracture of the

specimen, x2 = 1 and ¢ = 0 and hence for complete instability we have:

b+ x > 1

and this condition is shown in Figure 5 as the value of x as a function of
L/D. For ¢ + x < 1 there are some values for which there are two possible
x values which corresponds to the crack arrest case. The limit of this is
the minimum point and for x greater than this, the cracks are always stable.
These minima are also shown as a function of L/D in Figure 5. The solu-
tion for the small crack case (the Griffith solution) is also shown, i.e.,

- 1 (LY 1
G R (D) x

to give the short crack values. Figure 5 is marked with the three regions
of behaviour.

If the energy to failure U is plotted as a function of BD$ and if unstable
behaviour pertains, a straight line should result as shown. If stable
crack growth is occurring, then U will be linear with BD (1 - x) and not
BD$ in Figure 6. Figure 6 shows the type of curve expected if stable data
is plotted as a function of ¢. Clearly, there is pronounced non-linearity
for high ¢ values but initially (i.e. for x - 1) a reasonably straight
line is produced.

PLASTICITY EFFECTS

The extent of the plastic zone at the tip of a crack at fracture can be
estimated from:
E G
kil
o
Yy

X
P
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assuming that the zone is a line-like extension of the crack. Here E is
the Young's modulus of the material and Oy the yield stress. Since this
analysis is conducted in terms of enevgy it is preferable to use the ener
per unit volume to produce yielding in plane stress in an elastic matexriai;

- 2 fop
W= g 2E
p =%/
Equation (13) now becomes:
G

S T (14)

This zone distorts the elastic stress field but its effect may be modelled
in practice by changing a to a + r providing that r, < a. It is difficult
to estimate T in impact since wp 1s not known for these conditions but
the effect may be modelled by considering the influence of the addition

of various r,/D values to the x used to determine ¢. Figure 7 shows this
data for L/D = 6 and the non-linear cffects are apparent at the higher

(> 1) ¢ values. Note also that reasonably linear lines occur at low ¢
values giving fictitious G values. This form of non-linearity persists
in a plot against (1 - x) and can only be corrected by plotting against
revised values using guessed T values to achieve linearity.

The broken line in Figure 7 represents the condition for the onset of
general yielding in the specimen and may be estimated as:

¢ < P
*ZDb

For x > 0.5 there is clearly no solution for Ty /D 0.5. For smaller
crack lengths than the critical condition, the specimen undergoes large
scale yielding which may be modelled by the limiting case of a fully de-
veloped plastic hinge at the cracked section. The load necessary to
produce the hinge is: ’
BD? 2

P =0 — (1 - x)*

p y T (1 X)
If rigid rotation of the specimen about the hinge is assumed, then the
displacement at the crack tip is:

u = —TB (1 - x) A

If we now extend the line plastic zone concept to the fully plastic case
we may write:

G = ua
c
and since the work necessary to give u is:

U =P A
P P

. . 3 1
then ”p = GCB D, E-(l - X) (15)

This is the fully plastic solution involving no eluasticity effects and is
appropriate to the condition for rP/D > 0.5 and x > 0.5. This test state
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has been advocated for metals using the Jo analysis [9]. When less ex-
sive plasticity is involved with short crack lengths, then the energy
siput to achieve G. is made up of an elastic and a plastic part. If

B = ¢p for x = rp/D, then for x < rp/D the energy relationship is:

S (7__2__\)

tn fact, this function does not distort the corrected plot greatly and is
unlikely to be seen effectively in experimental data.

All the preceding comments on plasticity effects have assumed that the
fracture is unstable. If stable growth occurs, then an identical relation-
ship to the elastic case pertains.

SUMMARY OF DATA ANALYSIS

The analysis of impact data depends critically on establishing whether
propagation is stable or unstable. If instability is assumed, then the
crack once initiated will proceed to complete failure implying, in general,
that the propagation Ge is less than the initiation value. Data must then
be plotted as U verses ¢ to determine Ge. If plasticity effects occur,
non-linearity is evident in this plot and can be corrected by the addition
sf a plastic zone correction factor to §. Large scale plastic deformation
cannot be corrected by this method but for a full plastic hinge, a G, can
e determined from a ligament area calculation because of the low elastic
snergy contyibution.

If the crack propagation can be stable and occurs, for example, at a
constant G., then only very short crack lengths give unstable growth and
generally the data must be analyzed as U as a function of ligament area.
This relationship is not dependent on elastic behaviour and includes
plasticity effects. There is some scope for confusion with a fully
plastic, unstable case since only a factor of two differentiates them, but
comparison with limiting values in the U versus BD$ graph should clarify
the situation.

KINETIC ENERGY EFFECTS

The preceding discussion has assumed that the measured energy corresponds
to that absorbed by the specimen either in stored elastic energy or by
propagating the fracture. In practice, however, some is absorbed in the
form of kinetic energy and may be an appreciable quantity at impact speeds.
Since the impact strength is defined for high rates, then it is arguable
that a kinetic energy term is a necessary part of effective fracture tough-
ness and need not be removed. It turns out, however, that the kinetic
effects are dependent on specimen size and if realistic estimates of
energiles necessary to cause impact failures are to be made, then it must
be possible to separate the fracture work from the kinetic terms. This

is net a simple matter since it is difficult to compute or measure kinetic
energy with any precision. Some useful results may be obtained, however,
by considering simple models of the impact process as a guide to phenomena
expected in the test.
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RIGID BODY IMPACT

Consider the impact test to be modelled by a large striker of mass M
impinging on a small specimen of mass m whose stiffness can be represented
by a spring of compliance C. If the two masses are considered as rigid
bodies, then from momentum:

MV +m Vo =MV; +mV, (16)
where V, Vi are the initial and final velocities of M, respectively, and
Vo and Vy are those for m. If the Newtonian concept of a coefficient of
restitution e is invoked, then:

Vo - Vy
R (17)
vV - V0
If « = m/M, then by combining equations (16) and (17), we have:

1 - o e 1+ e
Vy =V (_i*l = ) + Voa (; ot a)
vi{ire) _y (e-c £18)
1+ a o\l + o

For most impact tests a << }, and the equations become:

and Vo

i
it

Vi=Vand Vo = (1 + &) V - e V0 (19)
The energy lost by the striker is:
v
Ur = M (V2-Vy?) = m V2 (1+e) (1- 7 (20)
and the energy of the specimen is:
v
1 1 :
Uz = 5m (V2®) = 5mVv2 (1 +e (1 - 72 (21)

After impact, the kinetic energy of the specimen, Uy, is converted to
strain energy in the spring. For a deflection of A the stored energy is
1/2 A%/C so that we may write:

L A%

U, = %—m A? 5 ©

and differentiating again:
0=A (A" + w? A) where w? = (mc) "1

and the solution is:
Va
A= ;-sin wt (22)

On the first impact Vg = 0 and V, = (1 + e) V so that the specimen leaves
the striker, compresses the spring, and then as the spring recovers, makes
the second impact with the striker as sketched in Figure 9. The time of the
second impact, ti, is given by:

wty = (1 + e) sin wt, (23)
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and the velocity:

VD =V (1 + e) cos wt, (24)
The process is then repeated with the new Vo value and hence a new t; is
determined.

Clearly, the nature of this effect depends on e and the behaviour it
implies. For e = 0 we have perfectly plastic impact and Vz = V for all
Vo values and there is no bouncing since the specimen continues with the
striker and:

Ui = m V? and U, = %»m v?

Here 1/2mV? is lost on the first impact but Uy = Up + 1/2mv? thereafter.
The other extreme case is perfectly elastic impact with no loss in which

e = 1. Here V, = 2V for the first impact and Uz/U; = 1. The situation in
subsequent impacts is shown in Table I and since V5 is negative, there is
an increase in the relative velocity at impact and more energy is impacted
at each blow as shown in the Uy values. Also shown in Table I are some
values for e = 0.3 where Vo is positive so that the relative velocities
decrease finally resulting in V2 < V and the specimen is carried along by
the striker. There is a critical value of e = (7/2 ~ 1) which results in
Vo = 0 and in all cases the impacts are identical with Vao/V = 1/2,

wt1 = /2, and U, = 1/2mV>r.

If bouncing is occurring, then the energy measured is in units, or quanta,
which depend on e. Some of this energy (for e < 1) will then go into
strain energy and during some bounce phase the specimen will fracture.

The measurements will never be able to discriminate more accurately than
the current quantum which has been imparted. For example, in Table I
values for e = 0.8 are computed and the Ui values will be the measured
quanta. Some of this energy is stored in elastic deformation, some is
returned during the next impact as kinetic energy and some is lost.

DETERMINATION OF GC

To determine G experimentally, a graph of the energy absorbed Uy must be
plotted against either BD¢ or ligament area A so that Ge may be derived
from the slope of the resulting straight line. Assuming now that one or
other of these representations is appropriate, then either may be regarded
as proportional to the energy stored elastically, Uz . Figure 10 shows
the general nature of the expected result with the data falling in bounds
because of the kinetic energy effects and bouncing. The calculations are
for three values of e and clearly e = 1 forms bounds for the other cases.
The lower bound is the desired result of Ur = U2 while the upper bound
corresponds approximately to U; = 1.5 U,. The increasing quantum effect
is also apparent in this and the e = 0.8 case. The interval for e = 0.57
is constant and the average line through this data has an intercept of

Up = 7/2 (1/2mV?) and a slope of Uy = 4/7.U,. 1If it is assumed that the
data lie within the range 1/3 < e < 1, then this line will represent a
reasonable average to the results. The measured slope can be corrected by
a factor of n/4 which, of course, assumes that the energy lost in stress
waves is indeed lost and is not available for fracture.

Some inherent limitations of the test are apparent from this analysis.
The elastic bouncing phenomenon means that there is an inherent discrimination

0]
<
0
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phenomenon which may be expressed as:
Uy > 2m V2 (25)
Assuming an unstable form of fracture, this may be written in terms of a

factor f such that:

(z6)

To obtain useful data, f must be greater than about 2 which means that for
low G values, it may be necessary to use low L values and in extreme cases
V may have to be veduced.

The discussion here has been directed towards simple energy measurements
and clearly more information is obtained if load measurements are taken.

If the striker is instrumented, however, the same problems exist in that
pulses of load will be recorded with the same uncertainties as in the
energy measurements. Instrumented specimens do provide much more informa-
tion but are expensive to use, particularly since it may be necessary to
take several measurements to establish the deformation pattern in the speci-
men. It seems unlikely that such a method could be used on any regular
testing basis and since no particular advantage is obtained by instrument-
ing the striker, the conventional energy measurement seems the most desir-
able. The device of reducing the contact stiffness to avoid bouncing is of
dubious value since it introduces the additional uncertainty of contact
point losses which must be corrected.

SOME EXPERIMENTAL OBSERVATIONS

There has been a substantial body of information which shows that the
concepts outlined here work reasonably well in practice [4,5,6,7] but not
a great deal on the details of thes tests. Some data is given here which
illustrates some of the factors involved.

DETERMINATION OF e

A series of tests were performed in which unrestrained specimens were knocked

off the supports of a pendulum impact testing machine and the energy recorded.

Four materials were tested, namely polymethylmethacrylate (PMMA), polyvtetra-
fluoroethylene (PTFE), medium density polyethylene (MDPE) and a thermoset re-
sin, and the length/depth ratio was varied between and 10. The data is
shown in Figure 11 and is remarkably consistent giving an average value of

e of 0.53. Each point represents an average of five readings and the scatter
was never more than 5%. No trend with specimen mass or dimensions is dis-
cernible.

vi

e is not a material property but reflects such parameters as contact
stiffness and specimen size and shape. Apparent e values have been computed
for different simple geometries (e.g. [10],[11]) in terms of stress wave
interactions and illustrate clearly that the energy '"'loss'" implied in e is
more accurately regarded as a measure of energy distribution for the size
and shape of specimen and striker, and the time scale of the test. Some
energy is undoubtedly lost in plastic dissipation at the contact point but
the majority of the apparent loss is in the form of stress waves moving
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through the specimen. It is not surprising, therefore, that the data are so
similar for the various materials since they reflect the similar dimensions
of the specimens more strongly than they do the material properties. The
value of e = 0.5 gives a moderate intrinsic scatter on the data (see Figure
10) but does imply that the G; value obtained from the slope should be
corrected by a factor of 3/4 to remove kinetic effects. For comparison
purposes, this is not important since it is the same for all materials and
some kinetic energy distribution effect is an essential part of the fracture
toughness under impact conditions. Care should be taken, however, to quan-
tify the kinetic energy effect with substantial size changes.

FRACTURE DATA

Figure 12 shows some data obtained for PMMA Plotted as U versus BD¢ (¢

taken from reference [6]) and a good straight line is indicated. The inter-
cept is the measured kinetic energy from unsupported specimens. The megsured
slope G. value is 1.05 k.J/m? which gives an absolute value of 0.81 kJ(m‘.
bata of this type is obtained from moderately tough, glassy polymers in

which the toughness to density ratio is such as to present no problems

from discrimination effects.

Figure 13 shows some satisfactory data for a considerably tougher glass
fibre reinforced thermoset resin. There is more scatter in the data
because of the nature of the matexrial but there is sufficiently good lin-
earity to obtain a value of Gc'

Figure 14 shows data for a moulding compound of rather high density and
low toughness The results for the 4L mm span and 3.36 m/s velocity

show consi cable scatter and no trend with all the values in fact less
than the kinetic energy reading. On reducing the span to 21 mm there is
some improvement but it is only when the velocity is decreased to 2.44 n/s
with a 21 mm span that a good line is obtained. The f factor (equation
(26)) is shown on the figure for the three cases and asg expected £ = 2 is
required to give a satisfactory result.

Some results on a medium density polyethylene shown in Figure 15 illustratec
the influence of plasticity effects. There is a distinct curvature in

the U versus BD¢ data and when this is plotted as U versus ligament area

in Figure 16, there is again distinct curvature, this time in the opposite
direction. When plastic zone correction factors are applied to Figure 15,
however, it can be seen that rp = 0.5 mm gives very good linearity and

Ge = 14.2 kJ/m?. The use of rp = 1 wn clearly over-corrects the data.

An example of a more pronounced plasticity effect is shown in Figure 17
which gives data for an acrylobutadienestyrene (ABS) resin. The curva-
ture in this energy versus BD¢$ graph is very pronounced tending to a
limiting value at high ¢ (small a) values. When plotted on a ligament
area basis in Figure 18, this gives a good straight line. Assuming that
this is a plastic collapse situation, then G, may be computed from equa-
tion (15), i.e. Ge = 2U/A giving 23 k§/m?. This slope is shown on the
BD¢ graph in Figure 17 and it is a reasonable assumption that plasticity
corrections to would give such a value. Simply adding an Tp correction
to a is, of course, not possible in this case since rp is large. The
horizontal line is the fully plastic collapse energy for x = 0.
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CONCLUSIONS

The analysis of the impact test presented here has illustrated the wide
range of possibilities in the data. Conditions for stable and unstable
failure, plastic deformation effects and finally kinetic energy phenomena
all play a part. Only the latter, however, presents a fundamental difficulty
since the inclusion of corrections is problematical even if they can be made.
The other effects can be established by careful observation of the variation
of absorbed energy with crack length.

While many possibilities exist, in practice the situation turns out to be
relatively simple. The energy loss factor (e) is essentially constant
and kinetic energy effects are seen in all tests as a positive energy
intercept. Stable crack growth data giving a constant propagation energy
has not been observed in these tests (and presumably this implies that in
MOST polymers the propagation Ge is less than the initiation value).
Materials with small plasticity effects (the glassy polymers) give very
good energy versus BD$ lines and the tougher materials which show plasti-
city effects seem to be amenable to plastic zone correction factors. Mater-
ials which are deliberately designed to absorb energy by yielding, such

a5 ABS, seem to be amenable to description in terms of a full plastic
collapse of the cracked section. Thus, the careful application of conven-
tional fracture mechanics techniques to the simple energy impact test

can elevate the results from doubt and uncertainty to the point of giving
reliable information.
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TABLE I
1 2
Impact Number Va/V W t) VO/V U;/g mV
z 2.00 1.89 ~ 0.64 4.00
2 2.64 2.16 ~ 1.48 6.56
3 3.48 2.38 ~ 252 9.92 e = 1,0
4 4.52 2.55 « 3wld? 14.08
5 5.77 2.66 = 5.11 19.08
1 1.80 1.78 - 0.37 3.60
2 2.10 1..92 = 0.72 4,95 _—
3 2.37 2.07 - 1.13 6.18 == G0
4 2.70 2.19 = 157 7.67
1 1.30 1:.22 0.44 2.60
2 1.17 0.98 0.65 1.46 e = 0.3
3 0.97
All /2 W/ 0 L } e = (n/2 - 1)
b
A
[)
, i o}
1
!
[
A i }
I ~
I PN
%' ¢ e, e
A !
i AT
| ; |
§ i i
i t |
[# i i
A + AN !
i 1
] 1
i

(a) Geometry

Figure 1 Linear elastic

$13

1
-~ s
(b) Loading diagram

cracked body

fo-

|



J.

G. Williams and M. W. Birch

Fracture 1977, Volume 1

Fa
m
(2)
(3)
o
a A
Figure 2 Load deflection diagram for:
(1) Stable fracture;
(2) Unstable fracture;
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