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TENSTILE INSTABILITIES IN STRAIN-RATE DEPENDENT MATERIALS

J. W. Hutchinson and H. Obrecht*

ABSTRACT
{levelopment in bars of strain-rvate dependent materials under tensile
3 ed in several ways. For a cireular bar of a power-law

: 1, an exact Linearized solution is produced for the velo-
s and stresses due to a small nonuniformity in the radius which

: stnusoidally in the axial direction. This solution is used to

the accuracy of a long wavelength approximation commonly used to

> neck development. The long wavelength approximation is then

| to study the growth of nonuniformities in bars of a general class
in-rvate dependent materials. This analysis, together with two
itive examples, elucidates Hart's stabllity eriterion for such
‘als. Atteation is drawn to the connection between the criterion and
cvimental observation in tenston testing and the closely parallel situ-~
in ereep buckling of compressed colums.

i
[¢

SHPRODUCTION

development of necks in bars of strain-rate dependent materials under
ssile load is analyzed from several points of view. To start, power-~law
cping materials ave considered. An exact linearized solution for the
ain-rates is given for a solid round bar with a slight non-
current radius which varies sinusoidally in the axial
rate of growth of the nonuniformity is examined as a func-
4 of the rutio of its wavelength to the bar radius. Long wavelength
perfections are found to grow faster, at least in the early stages of
¢gwth when the linearized analy is wvalid. This growth rate can be
tculated accurately by a widely used long wavelength approximation in

ich the rate of contraction of any cross-sectional area is determined by
taking the stress to be locally uniaxial and uniform over the section. The
iong wavelength approximation is used to study the growth of geometyic non-
sniformities in a general class of strain-rate dependent materials. This
snalysis elucidates Hart's [1] stability eriterion for such mat 1ls.  Two
illustrative examples are chosen to show that the criterion is not univer-
sally useful in that it may greatly underestimate the critical strain or
¢ime for noticeable necking to set in.

Hart's criterion is closely related to an analogous stability criterion
sroposed by Rabotnov and Shesterikov [2] for the creep buckling of columns
mder compressive load. Attention is also drawn to the connection between
the stability criterion and experimental observation in tension testing of
sate-dependent materials and the parallel situation noted in column buck-
ting almost twenty years ago.
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in this limit (5) reduces

GROWTH~RATE OF S GEOME' i
SMALL GEOMETRIC NONUNIFORMITIES IN A CREEPING BAR ¢ (8) and Figure 2, £+ 1asq>0
Zeyn from n b4 > N a .

Consider an infini ¢ i

) Finitely long, axis o o 14

sid g e 1) , axisymmetric solid bar whos Ty ius
varies along its axial direction z according to AL Whoss wurrent. radivg

A = (n~1)éo AA (9)
obtained by assuming that at any
ea AA the stress is uniaxial

an (9) is precisely the result
ection with a small nonuniformity in ar
snitorm across the section, as will be shown later. Calculations based
sene assumptions, which are quite common in the material science litera-
i11 be referred to here as long wavelength approximations. Nonuni -
es of long wavelength experience the fastest growth-rate in a
iaw creeping material and (9) 15 reasonably accurate if q < 1.
st Figure 2, ponuniformities with sufficiently short wavelengths
q sufficiently large) decay in the sense that A > 0 if DA < O
0 if AA » 0, or more briefly that A@/AA < ¢. For n = 3, for
it can be seen from Figure 3 that AMAA < 0 for wavelengths
than about 2 1/2 times R,. A more meaningful measure of decay or
is the rate of change of the relative size of the nonuniformity,

AA(E) /A (T,
. AR TN 5 - 3 s =
a = DAJA_-BAA /AL = AR/AFEDAIR G = (AA/A ) [AR/MA+E,] (10)

R = Rﬂil+g cos (2mz/A) ] -

S P ed in £ . 31dS50 £ = S & giecte ary creep
as epilcte igure 1 lastic strai ate ire ne T a
d ¥ Elast strain-r o g o3 slec d 1
strain- es a AL 2] Z > T e -ld( relatiocu
T rates re assumed to be gaven by he well known power W 2
¥ 343

£ o= 2™t a = (3 \2
5T 7T% %y % 77 %y %) ()

where s;; is the stress i

i E he stress deviator and o, i &
here S . . 15 the effecti stress i
tension (2) reduces to & = ool © he sffective stress. Tnsiy

From

h 2 AR B R i P - B o = 2

The bar carries a total axial load P. h perfect Serves a a converns
: ‘ B A 1 3 The perfec bar s ’ e

o fo . With 3 O and R = R S he ress d s 3 N o e
]e'ntv re ﬁ»fv(fn(b(-‘ - ith %; = ana = o the stress an strain-rate in ths

(¥]
g g =P 2 20 o 2 n =
e] iRy v B, BE, S ao (3)

2z 27 o

a4 negative value of AA/AA+§O or, from (6), & negative value of

jf+1 implies a decay of the nonuniformity yelative to the evolving

. of the perfect bar. Such relative decay never ocecurs since it can
~hown that the limit of £ for large ¢ is -1/ (n-1) and £ approaches this
from above. In sumnary, the amplitude of a sinusoidal nonuniformity
decrease in absolute magnitude if g is sufficiently large, but the

isrive amplitude does not decrease.

where throughout the

hex : paper a subscript or s i i

whers Thmowshouh Hie ; ript or superscript o will de 3

ence SOLZZ?g;dt?ilwfté the perfe§t bar under the sa;e load ; db??ﬁg qu%nM
between-vai w;. dlso'be uged in later sections. Denote ﬁﬁ* d?;; el
e ues for the imperfect bar and the perfect b he same
instant of time as ' perfect bar at the sane

in the vicinity of n = 1 is included in the
4 nonzere limit as n > L

T TIU T (4
J discussion of the behaviour

dix since the (n-1)f in (5) has

» y val for & s 2 s @

he boundarx alue pr oblem for these quantities formulated in the

o un ] > b i 1es is rmiiate i

A[) pendix. There it is shown that for small £ the ¥ oblem may 1 e 1 '11;<3a ol
> T -

ized and solved in closed f
St . sed form.
LONG WAVELENGTH NONUNIEORMITIES IN A CREEPING BAR

LINEAR GROWTH OF

olves linearization about the solution
ict attention to nonuniformities with
that the long wavelength

valid over a substantial portion of the tifetime of the
assumed to be uniaxial and

apalysis just carried out inv
- the perfect bar. We now resty
jengths which are sufficiently long such

Of primary int st ;

- nterest here is the ra For

CEBL =S At nAl ATeA DA = A E Idti :i gliyth of the nonuniformity in the
e T « A reveal: | 3 % e )

result is (see Appendix) o ing form for sxpressing this

oximation 1is
As previously indicated, the stress is

AA = (nwl)cm AA £{n,q)
(5)
where iform across each cross-section according to
p o= P I
BA = 2mR2E cos (2m2/)) 6 = Wb (b
) (6) ;
shere A is the area of the cross-section in question. in this approxima-

tion simple formulas can be obtained for the fully pnonlinear behaviour,

including the time to rupture. As the rupture time is approached necking
way become highly jocalized and then the long wavelength approximation
may no longer be accurate. However 1t is reasonable to expect that the
rupture time obtained by this approximation should provide a lower bound
+; the actual rupture time since the growth-rates associated with shorter

wavelengths are slower.

is the discrep: 7 in cros i
’ discrepancy in cross-sectional area at z in | i i
= aeFe - 2z in the linearized problem

g = 2mR /A .
[+ L7)
The expressi is gi i
e expression for f is given in the Appendix. Numerical values £
a alues for f

as a function of q for fixe n ¥ %) e =3 3 s £
i “ixed are lotted i g
£ in small 4 17]' ves & - in F igure 2. An eXAPpans ion of

fin,q) = 1 - Lfn_ 2 1 n%+3n-¢
@ §\n-1/ 9 " 6 Hvﬁt?“;{ q* * sus (8)

area of the perfect bar

cross-sectional
a of the section of the

A(t) denote the are
oss-sectional area. With

vs before, let Ag(t) denote the
45 a function of time, and let
imperfect bar with the smallest cr
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DMA(t) = A(t)-A ;
) (t)-A_(t) 12y trernatively, (21) can be obtained by integrating (9).) For small non-

fmities, e.g., n < 0.01, the linearized solution is accurate over

. of the lifetime of the bar. Nevertheless, it is incapable of giving
indication of the dependence of the rupture time on m.

é?ttg bg-thefmeasure gf the igitial discrepancy in arca between the =
] & imperfect bar in question and the perfect bar defined accordis

n = -AA(0)/A_(0) . % ; i » i i

o (13) iy nonlinear long wavelength analysis, largely based on numerical
~sutation, has been presented by Burke and Nix [4] for this same class
torials. They give details of the spatial development of the neck
.ome specific initial nonuniformities in finite length specimens.
¢ discussion of power-law creeping materials will be given later in
paper following discussion of a more general class of strain-rate
ent materials.

Positive n thus corres S n initiall i
T 2 ponds to an initially imperfect ba i i
cross-section satisfying A(0) < A _(0). v o b e e
o

kﬁz ieggzite tbe current lengtb of a material line element aligned with
t ) e axis and £ denote its rate of change. Assuming th; deform
1s incompressible, the strain-rate (natural-rate) is B - :

¥%15 OF GROWIH OF LONG WAVELENGTH NONUNIFORMITIES IN BARS OF A MORE
AL CLASS OF STRAIN-RATE DEPENDENT MATERIALS

€ = 4/% = -A/A . fray

It is related to the stress by
the form

£ = Ci’.ffn
(x5 F(e,i) (22)

o)

ve o and € are defined as before. The bar is subject to an axial

s P (t) which will be assumed to satisfy P(0) = 0. As in [1], the

¢ wavelength assumption is invoked so that (11} and (14) apply. As
fore A(t) denotes the smallest cross-sectional area of the imperfect

¢ and Ay (t) that of the perfect bar. Both bars are subject to the same
4 history P(t). The initial nonuniformity measure n is again defined
{13) with AA(t) by (12). Denote the solution for the stress and strain
.ociated with the perfect bar by 0,(t) and €5(t) and let o(t) and €(t)
associated with the smallest cross-section of the imperfect bar. Let

gozngogsgant P,Vthe eqpation'for A(t) can be obtained by eliminating
rom (11), (14) and (15) and integrating with the result

an{P/ACO) ]t = 1-[A(t)/AC0)]™ . (16)

First, the critical time of ¢} 9 i < ¢
t < 5 @ e perfect bar t 158 ‘he time al ic!
A > 0) is found from (16) to be o & ? Fhe fafie at which

l/tg = on[P/A_(0)]" = ngc(o) an

as noted originally in [3]. Then with © = t/tS (16) may be writt by = w(Ep=,t8) . AELE) = E(t)*ﬁoct) ’ o
the perfect bar as o> ) omay be written fop
proceed to obtain the linearized equation for the growth of AA by

tematically linearizing with respect to n and the A-quantities. Note
t by virtue of the definition of the A-quantities the linearization 1
with respect to the evolving configuration of the perfect bar. From (11

A, ()78, 0) = a-myt/m (18)

§§x€ﬂ612;§:?2c;ng-(12) and (13) and retaining the definition of T based
Pl ra tlwe for the pgrtect bar, one can rewrite (16) in the ACA v+ AA = O (24)
ost instructive for the imperfect bar as o o

aid from (14)

= oy WM s i /

BACE)/AL(0) = ~(1-1) M| (1ot I (19)
The rupture time for the imperfect bar is e = “AA/A0+AOAA/A6 ) h(AA/AOJ ’ (=5)

€ = ¢© 1-m*™ integration of (25) subject to the initial condition (13) gives

o (-1 - (20)

S 1 4 ~ 1Y g o] 2 L R AV VP, . 26/
Golfq lin? %uxves in Figure 3 are calculated from (19). They approach ! XA/AU o
Yfgélsaivgiyggzotes1g%v§n by (20). Also included in Figure 3 as déshed
e predictions based on a linearization of (19) in small . Lrow (22),

o ) E&L Ao = (%;) A %%— A€ (27)

AA(E)/A (0) = -n/(1-1) . (21) jo /o
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o other hand, the sign of h may be a sharp.ind%cator if the magni-
. of h is large so that the characteristic time 1s short compared ﬁo

~jevant time scale associated with deformation of thg perf?c? bar.
an be the situation for materials which are nearly 1nsen51t}ve to
, 0 < m << 1) and which are subject to the history

where it is to be understood that the partial derivatives in (27) are
functions of time through their evaluation at e5(t) and €5(t). Eliminat:
of Ao, As and A £rom (24), (25), (26) and (27) gives the linearized d
ferential equation for AA(t). It is

jin-rate {(i.e., < ) ; t
tension test at some nominal strain-rate €. Then

A . - X '3<wmmwd - . .
AR = (Y/m)Aon (28) @éjofm). For m << 1 the sign of h depends essentially on the sign of
where furthermore, from (29),
= = dg 5 (31}
- " aF 2 . -1+ v =20 o_ = do_/de
A VT HE\AE) o 2 o o' "o
Yt} (Be) o, » m(r) (at) = (29)
° ¢ ° ol . 0y » - - z P .
. is the well-known necking criterion of Considere. Lcnd}t10§ (31) is
and 5 sonably sharp criterion for pr?dictipg‘the onset of necking ?? bifs
. sterials which are strain-rate 1nsens%t1ve or vearlyfsg. It }bAé 50
BLh = EEA{*1+Y+mJ (30) wn that the long wavelength approximation nsed in deriving (31) is

te as long as the wavelength of the nonuniformity is not less than
Hart's original investigation proceeds along lines similar to the above ral radii of the specimen [5].
except that he does not explicitly bring in the effect of the initial
nonuniformity which enters as the nonhomogeneous term in (28). (Note ti
only if y = 0 will this term drop out). Consequently Hart arrives at ju
the homogeneoys part of (28) and proposes that linear stability hinges
the sign of AA/AA,  This, in turn, leads to his comdition for stability,
{(~1+y+m) > 0. Apparently his suggestion that AA/AA is negative if

{(~1+y+m} > 0 has led some to conclude that nonuniformities should tend t
decrease with time under these conditions. In general, this is not corr

4+ can also be cast on the significance of basigg a critcrion.on

sv+m) by noting that the criterion depends heavily on the choice of

he measure of the nonuniformity. Consider, as before, Fﬁe mgasure,
AA(E) /A (L), of the evolving relative sxze'of the nqnun%form;sy,
.ioh is at least as acceptable as the absolute size AA.  EBquation (28)
‘zuudily converted using (10) to

J

Indeed, it can readily be shown from (28) that the sign of AA/AA is not a + ﬁ(t)a = —(Y/m)éwn (32)
tied to the sign of -~l+y+m, )

The load history enters into (28) through h(t) and the nonhomogeneous t

which both depend on the deformation history of the perfect bar. The s¢ ~ £ .
tion to (28) subject to the initial condition (13) is h(t) = ﬁg—[»1+YJ (33)

suggesting the sign of -l+y as a possible critefiagz Note from (25)
toAe = -A, so that a criterion based on growth or deca ' ' -
. one based on localization of axial straim. This alternative criterion,
to the sign of -~1+y, has been derived bx Jonas, et a; [6].~ Only w%en
« is very small will any such similar criterlog be essentially lndgpen§tnt
- the choice of the measure of the nonuniformity, and then the_crlterxon
; sentially that of Considére (31). Of course, phe shortcomings gor N
.tances when m is not very small apply equally well to any such criterion,

4 pointed out by Jonas et al.

Ft L - %
oA = —ne A0y sy /m(0) 1A (r)e! P
o

where

t
H{t) = SJh(r)dt
[¢]

Depending on P(t) and on the nature of (22), h may change signs during th
course of the time history, as will be illustrated by example in the next
section. It is clear from the above solution that exponential growth or
decay depends not only on the instantaneous sign of h but on the integra
history of h as well. More important to our discussion, however, is the

magnitude of h which relates to the characteristic time associated with sistion between o, € and € which is
exponential growth or dgcay. If m is not very small, for example m = O(1  eEaep

then, from (30), h = 0(¢,). That is, the characteristic time is of the )
same order as the time scale associated with development of axial strains
of order unity in the perfect bar. A change in sign of -1+y+m from posi
tive to negative is not likely to signal any noticeable increase in the
growth of a small nonuniformity until an additional axial strain of order

4 HUMERICAL EXAMPLE

remarks we take the simple functional

illustrate some of the above
. : 5 frequently used to represent nonsteady

f o= aol/e (34)

X . . & «1/n .
unity takes place. In other words, when m is not very small the early 6 = F(g,€) o L/ngp/nzl/n (35)
stage of the necking process is extremely long-lived, and the sign of
~-1+y+m cannot be expected to serve as a useful indicator.
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The parameters in (29) and (30) are
mEl/n L Y(E) = p/[ne ()] (56)
h(t) = § ; I} e
(t) = $1+1/n+p/ e (I E /m . (37)

The resp . ss of Figur
were czigﬁfiru?rVLb o P;%UIO 4 are for constant applied load P They
2 L ated numerica y u';ing a straighti " . . . 2

: si a stre ht forward incrementa
with due allowance for : B ; 8 é incremental method
A allows > for the initial time ste The imens i -
is defined by time step. The nondimensional time

T = t[naog(o)} . (38)

With a dot denotine diff iati
CNot ifferentiation with respec O 1 S %
the perfect bay isbgoverned by ) SOAPSSE B s b Reepnme )

A ; l-n -
T[“(()“* I T s g & B YP
A {0 : ’ € = e e %
ot ) neg /\0 (0) [$) m;p AO )] » (39)
)

In the : ave 3 .
*h[1?§mloyg wavelength approximation a similar set of equations govern
e time history of the smallest cross-s 4 . L 5
_—rT g ik § ross~section of the in fect
initial nonuniformity is ¢ i L ! mperfect bar.

i i 1s again defined by (13 o fo i 3
bar, n > 0, in Fiew ’d by (13).  Curves for the imperfe:
x » ‘igure 4 are all plotted agains - P < .

T defined in (38). plotted against the nondimensional time

L;:?LFJ7%hitq;??db§ i?ep t@ét h wil} h? positive when £, is sufficientiy
enat ive. L£ i q)oabnlg glgure 4 indicate the time at which h becomes
§ el céﬁ ELPQE%?'bLZ these examples atlleast that no special
it © canm be <:%11 ed to the time at which h = 0. The Considére
5 [ +y 0, is met prior to the time indicated by the dot.

An o ST Imen + e 4 st ivatri > i
:vq;fﬁe:mentdé investigation of necking in a strain-rate sensitive met
syste as conducted by Sagat and Tapli 7] ; ” »
plin {7]. 1In one case i vhic X
mentally measured values OE 4 i ied : e e
n 1 sure alues m and vy implied that (-1+
for axial strains ) ) ot Setactopine omni e
tor axial str 5 greater than about 0.02, the first detoc if
TriaE wone non et h _ahioy .02, c1rst detectable monunifo
3 until strains about 0.7 w attai !
o wera not - d ) ¢ L 0.7 were attained. Hart [1}
spci?a; ;;T§}¢rfdelay in necking beyond his stability limit for t;e =
POW@f«laQ ;r;>0 maF?¥Luls wha:e Y = 0 and m is not very small. The pur
P e b <L8 rgirtlgn (15) is such a material. In this case ‘
2 T gl s with AA/AA > O (see (2 for wan 't
formities. Nevertheless the tf&icfg;SZl){?x ?1? lsng R To B
& e : less, 4 ] any incipient neck to devel
on the order of the rupi i g e g
: pture time of the perfect bar, as has be
in connection with Figure 3 Burk i v 180
- ; g 3. Burke and Nix [4] have als 151 i
D i° 1ddjtion) e L X 14} have also emphasized this
e . | ¢ “ion, ey have performed calculatio S
small nonuniformity has 1i i The eperels Dasdosion i
: Yy ha ittle influence on the overs
ne : itt ! 25 verall load-e ati
history over most of the lifetime of the specimen. elongation

RELATION TO WORK IN CREEP BUCKLING

The his i e 13 e i

N rz:;zzt:rtgrjtp Euckllnﬁ of axially compressed columns is parallel j

50 E E cvents in the study of tensile instabilities i i

rate sensitive materials p¢ 5 oV hesterikor 2] pornain.
E ials. n 1957 Rabotnov and Shesterik

- / I NOV ¢ shesterikov [2] proposed

a terion for creep buckling of columns based on an analvsis]o% tie
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tial growth or decay of small disturbances obtained by perturbing

the evolving solution for the perfect column. These authors considered

- disturbances and therefore included inertia terms in their stability

ion, which turned out to be a third order ordinary differential equa-
However, their stability criterion is determined by the quasi-static
in their equation (i.e., the inertia-independent terms) and the quasi-
esquation is first owder, analogous to (28). (Rabotnov and Shesterikov
i introduce small initial imperfections in their analysis.

i, their resulting quasi-static equation would be unaltered except for a

openeous term analogous to that in (28)). The Rabotnov-Shesterikov

terion attracted considerable attention. Yet comparison of their cri-

#ion with test data on creep buckling times revealed that the experimen-

tv measured critical time was usually greatly in excess of the predic-

i of the criterion, similar to the situation for tensile testing of

sin-rate sensitive materials. An extensive review of creep buckling of

If they

iumns has been given by Hoff [8].

SEDIX:  ANALYSIS OF CREEPING BAR WITH AN AXISYMMETRIC IMPERFECTION

. boundary value problem for the stresses and velocity fields in a bar
material characterized by the power-law creep relation (2) is a non-
swar, viscous flow problem which depends on the current geometry and is
serwise independent of prior history. The problem considered (Figure 1)
infinite axisymmetric bar with a sinusoidal variation of the radius

&

wding to (1).

4 cylindrical coordinate system (r,0,z) with z directed along the axis
the bar, the field equations for axisymmetric, incompressible flow are

& = & = p~} & o=
€r Vr,r 5 kg T Vs o By Vz,z
(40)
. - 5 LAY Y
Erz (Vr,z*vz,rJ/” s EpTERTE 0
-1 : -1,
s X s =
T (10r),r+orz,z r 06 ) (41)
-1 5 - p
02,Z+r (xﬂrz),r 0 (42)

re vy and v, are the velocity components in the r and z directions, and
stress and strain-rate components are denoted with a standard notation.

= equations are supplemented by the constitutive law (2). Traction-
T = R, can be written as

@ conditions on the lateral surface,

drc052¢+dzsin2¢—20r,sinWCosw =0 (43)

(0r~07)sinwcosw+arz(co$2w~sin2¢) = 0 (44)

re P(z) is the angle made by the tangent vector to the surface with a
tor in the z-direction as depicted in Figure 1. The bar is assumed to
2

port a total axial load P so that for any z
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ihe linearized version of (50) implies

R
P=2r [ o, xdr. (45)
o 2
R
The amplitude & of the nonuniformity is assumed to be small which permits s° Ao, r dr = (Z'rer)&OO/Msin (2nz/X) . (51
0 2

the governing equations to be linearized in & and the A-quantities.
FEquations (40), (41) and (42) are already linear so the A-quantities simji

replace their counterparts in these equations. Equation (2) becomes integrating the equilibrium equation (42) from O to RO, one finds

reduces to (49).

\
Aéz = k"‘nAsv pressibility permits the introduction of a velocity potential @ such
AE_ = K" [{As_~(n-1)As_ /2]
T T 4 = = p ! . 52
. (46) Avr @)Z , o Av, x (r@),r (52)
Aggy = kml[Ase~(n—l)Asw/2]
N soverning field equations can be reduced to a single partial differ-
N sutial equation in ¢ along lines similar to those carried out in [5] and
Ae_ = k"'lAS we find
Tz rz
P
where k = 2/(3uagml). These equations may be inverted to give =0 (53)
. ™
do, = kAEZ/n—Ap -
5 = & - & on) 1~ T = (v (prd : 54"
po = k[AE * (n-1)AE,/ (2n) ] -Op L@ = ¢7herd) ) (54)
4 (47)
Aoy = k[Aée+(ﬂ“1)Aé2/(2n)]~Ap vhere L? indicates two applications of L. The boundary conditions
i and (49) become
po_, = kAE B .
A -1 . 3 . - R I
p T [1L(¢JJ,1. + (}; 0, =R (55)
where Ap = _(AOZ+A0 +AG@)/3. o .
x L®) - & = -3Eq€ sin(2mz/A) , r = R . (56)

A

A systematic linearization of the boundary conditions (43) and (44) gives
stion (53), with the boundary conditions, admits a separated solution

bo = o on T = RO (48)

& = ¢(r)sin(2nz/A) . (57)
Ac‘z = —quosin(2wz/k) on I = RO (49)

equation for ¢ can be written as

where g is defined in (7). In the linearized problem the conditions may
be applied at r = Ry as indicated. Condition (49) is consistent with

applied load P. To see this write (45) as (L+q2p2)(L+q?ﬁz) = 0 (58)
R R
P =2 f (OO+AJ°}r dr+2m [ (UO+A07)r dr re the operator L is defined in terms of the nondimensional coordinate
0 - R “ /R by
R o o
- 2 o] 2R ? o ; 2 ) B v
WROGO+2W £ Aczr dr+zWROEOOL05(2wz/A)+O(£ ,&Aoz) (50) L) = (27 ' (zd) K) - (59)
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With i = VT, o is defined as the first quadrant root of

AA = éOAA 2(n,q) 67)

2 _ n-3

T m i A

2n (60)

rical results for g for n in the range 1 < n < 2 are shown in Figure 5.
ations (62), (63) and (66) degenerate for n = 1 and this case must be
ted specially, which we have not done. Nevertheless, the numerical

lts for n = 1.001 in Figure 5 are for all practical purposes identical
to those one would obtain for n = 1. Purthermore, the expansion of g for
small g obtained from (8) holds when n = 1; it is

and ( ) denotes complex conjugation.

1he’general solution to (58) for a real, bounded ¢ can be written in tewms
of an unknown complex constant c as

¢ = {~£EOARO/(2W)]RE{ch(qu)} (61) g = -q*/8 + 5q"/876 + ... .

seen in Figure 5, AA/AA < 0 for all finite g when n = 1. However,
+3 already mentioned, the relative size of the nonuniformity AA/A, always
ases according to the linear theory.

inore

where‘Re denotes the real part and the terms in the square brackets have
been introduced for later convenience. Here, J, is the Bessel function of
order n of the first kind with complex argument. Substitution of (61) int
ghe bgundary conditions (55) and (56) and use of identities for Bessel
functions leads to the following pair of equations for determining‘c:
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AV (R)) = Ee ROR {edy (p)f cos (2mz/A) . (64)
Next, from

',‘q,'w N . . E E k

AOFAA = A = an{vr(RJ+Avr(R)] = 2nR[~R60/2+AvT(R)j
one can obtain the linearized expression

A = -AA€O+2WROAvr(RO) s (65)
Using (5), (6), (64) and (65) one finds

f(n,q) = el R J ) ] 5

n, g [ e{c.l(qu}—lj . (66)

Numerical results plotted in Figure 2, and those discussed below, were

determined from (62), (63) and (66).

:h? definiyiguAaf f‘in (5) is not convenient for displaying results for
tin the vicinity of unity. Let £ = (n-1)f so that, instead of (5), one h
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