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SOME RECENT THEORETICAL AND EXPERIMENTAL DEVELOPMENTS
IN FRACTURE MECHANICS
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ABSTRACT

eent theoretical and experimental developments in four distinet areas of
rqoture mechanics research are described., These are as follows: eaperi-
wental comparisons of different nonlinear fracture toughness measures,
including the nonlinear energy, i curve, (0D and J integral methods; the

singular elostic crack-tip stress and displacement equations and the val-
idity of the proposition of eir general adequacy as indicated, for

coample, by the piawially loaded infinite sheet with a flat crack; the
Lhermodynamic nature of surface energy induced by propagating cracks in
volation o a generdl continuum thermodynanic description of brittle frac-
ture; and analytical and experimental aspects of Mode IT fracture, with
sxperimental data for coertain alwrinum, steel and titaniwn alloys.

INTRODUCTION

in this paper four different aspects of our research program in fracture
mechanics are presented. They represent areas that involve problems that
are yet to be resolved in a definitive manner, and areas that "break new
ground," so to speak, certain to stimulate further yresearch efforts in the
future.

The first part concerns fracture toughness assessment for semi-brittle type
fracture, i.c. beyond the linear elastic rvange. The second part challenges
the general adequacy of the well-known "singular solution" for the elastic
crack-tip stress and displacement components, illustrated through study of
the biaxially loaded center-cracked sheet problem. The third part deals
with crack propagation induced surface energy within the framework of a
general continuum thermodynamic description of brittie fracture. The

fourth part involves analytical and experimental aspects of Mode 11 fracture
that indicate some Tesults contrary to generally held opinions.

Because of space flmitations some of the above mentioned areas will only
be outlined, while in others only select parts will be discussed in de-
tail sufficient to bring out the main ideas involved.

T.  ASSESSMENT OF NONLINEAR FRACTURE TOUGHNES

-l

For semibrittle fractures, i.e. seture under circumstances where crack
front plastic yield may be too ¢ .nsive to be ignored or treated as a
minor correction and where fast fracture may be preceded by substantial
subcritical crack growth, the problem of properly defining and evaluating
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is noted that in this definition the fracture toughness represents the
scess of the rate of work of the applied forces over the rate at which
wwergy is absorbed in elastic and plastic deformation at the instant fast
srack propagation ensues. No restrictions whatever have been placed on

¢he possible extent of crack-front plastic vield (e.g-, nsmall scale yield,"
rge scale yield,'" etc.) mor on the extent of subcritical crack growth.
“1is definition is a natural generalization of that used in linear elastic
{¢acture mechanics, and applies for both plane strain and nonplane strain

conditions.

1y
1.

“ince it is not possible at present to obtain an analytical (field derived)
szpression representing the jeft side of equation (4), other than by num-
«rical means, an empirical method for measuring this quantity, based upon

¢ single-test, load-displacement record, has been derived and successfully
sployed f{cf. Figure 1]. The details of the derivation can be found in
erence [2], and take the forms

n-1

~ 2nk FC 2 §.__ 1_‘ (5)
c de M(co) 2

G.= ) 1 ¥ w1 | Mico) )

il

when there is no suberitical crack growth prior to fast fracture, and

& n-1 o 2
F M(cg) 1 ., d 1

2nk | c b i pr S e~
n+1 M(CC) M(Cc) 2B ¢ dc M(co)

G, = 1+ s (6)

when subcritical crack growth is present.

Exgerimental cqmparisons

{n order to gain a better understanding of the empirical representations of
the left side of equation (4), i.e., equations (5) and (6), 2 number of
trests have been conducted and comparisons made between several other non-
{inear fracture toughness parameters. Direct comparisons have been made
hetween fracture toughness values obtained from the nonlinear energy method,
&., J integral, Jy., COD method, Gcops and the linear fracture toughness,
Gie = K%C/E, for compact tension specimens of several alloys. Additional
comparisons have been made between Ge and GR(R curve method) for thin
center-~cracked sheets of two aluminum alloys.

Gince the selection of the critical point (the point at which the test
data are used for fracture toughness assessment) represents the most im-
portant test variable, the rationale for its selection must be given care-
Ful consideration. The two most widely used critical points in nonlinear
fracture toughness testing are: (a) the initiation of subcritical crack
growth and, (b) the onset of unstable fracture (possibly including sub-
critical crack growth), which coincides with the maximum load for tests
conducted in load control. Fracture toughness comparisons were made at
both critical points soO that the effect of subcritical crack growth on
them could be revealed. The experimental procedures for evaluating each
of the nonlinear fracture toughness parameters will be discussed briefly
so that the basis for these comparisons will be understood.
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Nonlinear energy method

oy . £ ooy ~ J - 3 - v 9
I'he gkperlmental procedure for evaluating equations (5) and (6) is quite
§Eri}ghtt0rwgrd due to the separation of the linear and nonlinear portions
of G, that is, equation (5) may be written in the form

- o
G =CG_ .,
i8S ©

R SO [
Uc 28 }c de [ﬁ??;jj 2

and equation (6)

where

where GC is as shown above.

Qhe linear pgrt@on, G., can be ohtained directly from standard expressions
for the htreis intensity factors and the appropriate G-K relations. It has
been shown [3] that U can be evaluated by the equation

I3 n-1 ”
7 2nk |° Al -y)
bER AR M(c (73
where
oy (o) 2
= 1 o+ . ] =t f Ind e
n + 1n G In Vx) « (8)

in these equations the values of Fy and ¥, are obtained from reduced-
modulus secant lines drawn to the ponlinear Joad-displacement curﬁe. The
sccond's§cant line a, M, should intersect the load-displacement record at
the critical point (Fz = Fo) and the first should approximately bisect the
angle between the tangent modulus, M, and ap M. ’

R curve

For the thin center-cracked panels tested, significant suberitical crack
growth was observed so the fracture toughne:%‘according to fﬁeuﬁ‘éuéﬁe
wethod, Gp, was evaluated for comparison with the nonlinear(enerpv %Tacture
togghqass, According to recent discussions on the R curve methnjﬂfi.d]
t§1s fracture toughness measure is evaluated by substituting thﬁ créék ’
size agd load at the instability point into the appropriﬂteul{nénf.rg]a~
t{onshlp involving the stress intensity factor (regardless of tﬁé dﬁéTDv

of crack front plastic vield). For the Center—craékcd sheet, the AéTM{él
polynomial relation was employed in the form e h B

(9)

As has bcenthsgﬁved by many researchers, the determination of the critical
crack size is difficult, espe ially for materials like the 2024-T3 aluminum

in which the transformation from subcritical crack growth to unstable fracturs

appears to be a continuous process.
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Although the concept involved in determining toughness values by the COD
method is simple, its practical application is not a straightforward matter.
it has been shown by a number of investigators that there is a relationship
between the crack-tip opening, &, and the linear fracture mechanics para-
meter G. For example Egan [6], based on a linear elastic analysis, shows
this relation to be

E=gl . (10)

where
4/m for generalized plane stress conditions
o=
ane strain conditions.

zl/'n‘\/r.’;w for pl

It is now generally conciuded {7} that because of the approximations in-
volved in obtaining relation (10), « can be taken as having the value unity,
and the toughness values evaluated from

G(.IOD = O‘ys " 6(: (1)

which is considered valid only at the onset of subceritical crack growth.

In this expression 8. represents the opening at the crack border, and is
assumed to be a constant, characteristic of the material for a given thick-
ness and temperature, regardless of the degree of plastic yield at the
crack border, or of the specimen geometry and crack border strain field
pattern. The principal experimental problem with the evaluation of GCoDp
lies in the precise determination of d.. Although a number of methods
have been utilized by its proponents, the method used for these compari-
sons was to use a relation established by Egan {6] between the crack open-
ing and clip gauge displacements.

o

J integral method

The J integral was originally defined as a path independent line integral
in an elastic medium, linear or nonlinear [8]. However its evaluation as
a plane strain nonlinear fracture toughness measure, Jy., that is, for
elastic-plastic deformation, is based on an empirical measurement of the
so-called "pseudo-potential energy" with crack size. This definition is
actually the same as G for strictly linear elastic fracture, and aE for
nonlinear tracture, provided there is no subcritical crack growth (21,
because the J integral interpretation of the elastic-plastic problem is
limited to a deformation theory of plasticity under conditions of mono-
tonically increasing stresses at all points in the plastic region. For
deeply notched bend-type specimens it has been shown [9] that Jy. can be
evaluated by the simple relation

IA
= Sl 2
JIC Bb (122

where A is the area under the load-displacement record up to the critical
point (i.e either condition (a) or (b) above), and Bb is the remaining

B o »

ligament. For these comparisons it was determined that the Ramberg-Osgood

characterization of the load-displacement record could be integrated directly
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to provide an expression for the area under the curve in the form

TE2

A= QT! . (13)

Results and discussion for center-cracked sheets

Although a number of fracture toughness tests have been conducted on
center-cracked sheets of 7075-T6 and 2024-T3 aluminum alloys, the results
of only one test series will be shown, since they are generally typical of
the others. The vesults of the series of tests on 7075-T6 are shown in
Figure 2. For these tests the standard center-cracked geometry without
anti-buckling guides was used, and the displacements were measured at the
load points. The specimen dimensions were w = 254mm, B = L.émm, c/w = 0.5,
with gauge lengths varying between 178 and 813mm. Duplicate specimens
were tested for each length and the results shown represent the average

of each pair of tests. The tests were conducted in load control and sub-
critical crack growth was wonitored visually with a hand-held magnifier
(5-20X).  As indicated in Figure 2, four fracture toughness values were ob-
tained from each test. When the maximum load was utilized as the critical
1t, F. and a, were used to evaluate 0, while Fe and ai were used to
evaluate Gp. These valuesmgre seen in Figure 2 to possess considerable
geometry dependence, with (e increasingly higher than Gr as the nonlinearity
increased (decreasing gauge length). When the onset of subcritical crack
growth was selected as the critical point, the origi e and the

inal crack si
load corresponding to a one percent increment of crack growth was used.
This point was determined through direct measurement or by extrapolation
of an R curve back to one percent crack growth. The lower two data points
at each gauge length show the behavior of these toughness values.

These results demonstrate clearly that both G, and 6k possess significant
gauge length dependence, but that this dependence is due so0lely to the
nonlinear response associated with subcritical crack growth. 1In addition,
at the minimum length the nonlinear toughness a& is nearly twice a;c (eval-
uated at initiation of subceritical crack growth). This indicates the extent
of the penalty imposed on the methods that do not incorporate subce
crack growth into the fracture toughness assessment.

tical

The ﬁ} values shown in Figure 2 were obtained by use of equation (5) which
does not incorporate the subcritical crack growth directly into E;. There-~
fore, the nonlinear energy method was again calculated to account more
directly for the effects of subcritical crack growth in the manner in-
dicated by equation (6). For certain of the center-cracked panels, a; was
evaluated using both equations and the results were compared. It was found
that the toughness values according to equation (6) averaged about seven
percent higher than those from equation (5). Therefore, because of the con-
siderably preater ease in evaluating equation (5), the data points shown in
Figure 2 are based on this equation.

%

Results and discussion for compact tension tests

Additional comparisons, between the fracture toughness parameters ﬁ;, Jes
Geop and Gpe, have been made from compact tension tests on several alum-
inum, titanium and steel alloys. For most of these materials, a series

of tests were performed in which all dimensions of the specimen (w(width) =
76.2mm) were held constant except for the specimen thickness. 1In this
manner the effect of inereasing nonlinearity with decreasing thickness on
the various toughne parameters could be determined and compared. As for
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1T ELASTIC CRACK-TIP STRESS, DISPLACEMENT, ENERGY RATE AND BIAXTALLY
. APPLIED LOADS.

it is more or less accepted in fracture mechan}cs {h?t g?e ei?izlirzziess
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opening mode crack surface displacements

K s -
- ~i~~~—f~cos 3 (1 = Sin
X (21r) 2 “~
K 2
g, A cos % (1 + sin =
Y (271) 2 =
K / £
[ - ! e 5 iN g-cos Q—COS (14)
YT (w2 < -
5] Lo s
u, 5 (E-(K-l) + sin
Ky 2
ume e (EE) sin 24 (%{le) - cos?
v u 2 2 2
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(cf. Fégure 4), proyided 0<r/a << 1, where u is the elastic shear modulus
aed K is expﬁessed in terms of Poissons' ratio (3-4v) for plane strain and
(3-v)/(1+v) for idealized plane stress.

In a §ummary of our recent work which follows, it is shown that this
practice, althgugh literally time honored, is clearly unacceptable as a
ggnara% proposition [10]. The reason lies with the quite arbitrary prac-
tice of disregarding the second term of the Williams' eigenfunction Series
Tepresentation for the plane stress components, a contribution which, re-
lative to a rectangular (x-y) coordinate system, is independent of tﬂe

radial distance from the crack tip. This practice can lead to serious error

of both 4 quantitative and qualitative nature in the prediction of local

stress,_dlsp]acement and related quantities of interest, perhaps nowhere

better illustrated than in the problem of the biaxially loaded sheet with
a flat central crack (cf. Figure 4). ’ ‘

V1§h Fhe second term of the series expansion properly included, the stress
ancd dlbplﬁcement components near the crack tip for the hiaxial load problem
take the form: .

K
- i3 6] e] 30
G, ™m0 Q§ 1 - sin = sin 2v _ _ .
Y () ‘ 2 2 = o
K,
O gk o5 9 .
Mg = - COS 1 + sin = sin

44 (ZWT)bQ

30 (15)
Z

T Cos 0 + a

= GO§% ] w el

3

provided 0<r/a << 1 for the stress components and 0<r/a << 1 for the dis-
placement components. -

The standard one-parameter characterization of the elastic crack-tip stress
and displacement equations yield qualitatively as well as quuntati&el} iﬁ—
correct results for the local stresses and displacements. Note tﬁat for
Uy (r=0) = 0 according to equation (14), which is obviously incorrect
whereas from equation (15), A ’

. » (1-0) o (k+1)a ,
u (r=0) = - gm0 (16)

as one would expect. Note also that equations (14) represent the proper
an ~, 9 o~ ] o - £ ™~ T N 3 .,
d[plox]matlons only for the case of equal biaxial tension-tension applied
loads, i.e., a = 1.
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Lquations (14) also yield incorrect results for the square of the maximum
shear stress «

A (17)

T2 o
n

compared to

+(1-a)o sin %9

(18)

based on use of equations (15). Equation (18) can be rearranged to a form
more convenient for the plotting of the maximum shear isostats, (cf. Figures

5,6a-6d)
T V' +\2 3 B - /2
(.,,1\\_,) } (1;{ N | | e) g ein 39 (.1:
\o 2 ) a NG 2 a

L
= &

in? 8 = 0. (19)

As a result of the failure to include the second term of the stress series
expansions, the substantial influence of the applied load biaxiality on
these quantities is completely missed. Preliminary photoelastic experi-
mental tests verify the predicted shift in the axis of the isostats between
the equal tension-tension case, Figure 6b, and the uniaxial tension case,
Figure 6c¢.

The same holds true with regard to prediction of the angle of initial

crack extension. The maximum normal stress failure criterion was used as

a basis for making these comparisons, although the general adequacy of this
perhaps overly simple criterion is not necessarily endorsed. For lack of
space, the mathematical analysis is omitted and only the important conclu-
sions that follow from the use of equations (15) as against equations (14)
are presented, (cf. Figures 7,8). Equations (14) always predict a zero
angle of initial crack extension for alZ uniaxial-biaxial loading conditions
whereas equations (15) predict a turning of the angle of initial crack ex-
tension when the horizontal tensile load approaches about twice the vertical
tensile load, increasing as the horizontal-to-vertical tensile load ratio
increases.  This result is in qualitative agreement with the tensile bi-
axial load experiments of Kibler and Roberts [11].

An important theoretical implication which follows as a consequence is the
vealization that one cannot, in general, assume a priori that a flat crack
will ulways extend along its original plane under all symmetric in-plane
loading conditions when making an Irwin G-K type calculation.

Omitting mathematical detail, the inclusion of the second terms of the
series expunsions for the stress and displacements, i.e., use of equations
(15), can be shown to lead to the conclusion that the Zocal elastic strain
energy rate also has biaxial load dependency in the form
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t P r
a}li = G(rg,n) = A; 0% vy + Ay 0% 1o |- 1. (20)
e
I I

in equation (20) U' is the total elastic strain energy over the local crack
tip region, (cf. Figure 9), and Ay,Az are numerical coefficients of parts
and 11, respectively, that include the elastic shear modulus and Poissons'
ratio. Note that by use of equations (14) only the first term appears in
equatior (20). The seccond contribution to equation (20) cannot be dismisscd
as a "higher order effect," since for large values of o the second term

can become appreciable relative to the first (cf. Table 1).

The result shown by equation (20) appears to be in conflict with the gen-
erally accepted understanding that the gl/obal elastic strain energy rate
for the flat crack is completely independent of load biaxiality [12-14].
There appears here to be a contradiction, for how can the elastic strain
energy rate depend loeally on load biaxiality and yet appear to be in-
dependent of load biaxiality globally speaking?

An important practical consequence of these findings has to do with the
possible dependence of plane strain fracture toughness, Ky., on biaxial
foading. Further theoretical and experimental investigations of these
questions are being considered by our research group.

(1Y, SURFACE ENERGY AND ASPECTS OF 'THE CONTINUUM THERMODYNAMICS OF
BRITTLE FRACTURE

Since the time of Griffith some fifty years ago, several seeming contra-
dictions and paradoxes have persisted in fracture theory, which leave the
foundations of the theory on tenuous and uncertain grounds. For example,
consider the following fundamental questions: (a) The surface energy
associated with the surfaces of a separating body, first introduced by
Griffith, enter into fracture mechanics considerations through an addition
of a surface energy rate term into the global energy rate balance (First
Law of Thermodynamics). By virtue of this addition, however, the possibil-
ity of obtaining a corresponding Zlocal energy rate balance equation, as a
derived consequence of the global balance statement, as is customary in
the continuum mechanics for the nonseparating body, is lost. This fact
cither has not been recognized in fracture mechanics circles, or has been
igmored until now. (b) Based on everyday experience, fracture should be
thought of as an irreversible process. A body once cleaved in two will
not spontaneously coalesce when, in otherwise identical circumstances, the
sense of the applied loads which provoked the fracture is reversed. We
know from nonequilibrium thermodynamics that irreversible processes must
be associated with entropy production. Irreversible crack propagation
should then, in some manner, contribute to the entropy of a separating body,
and fracture should be viewed as a nonequilibrium (irreversible) continuum
thermodynamic process. In circumstances which give rise to brittle frac-
ture, elastic material response can be reliably assumed for the separating
body, which, however, leads to a paradox. In thermally conducting elastic
media, any entropy production occurs as a consequence of heat conduction.
Furthermore, if the elastic media is ideally constrained to adiabatic or
isothermal deformations, there is no entropy production at all. How then
can the nonthermal part of the entropy content of a separating elastic
body increase to agree with the requirement that crack propagation should
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he responsible for increasing this quantity? (c¢) Surface energy plays

an important part in the theoretical aspects of current fracture mechanics.
Yot in the current theory the surface cnergy associated with a separating
1id does not appear to be a clearly perceived and understood quantity.
from the time of Griffith such surface energy has been generally regarded
45 a "material constant," with different physical interpretations, de-
sending on who the investigator happens to be. However it is known experi-
mentally that envirommental effects clearly alter surface energy values.
There also appears to be experimental evidence that for the self-propagating
crack, surface energy is influenced by the crack propagation speed. Here
sxperimental facts cannot support the "material constant' assumption for
the surface energy induced on the surfaces of a propagating crack.

in a forthcoming paper, rveference [15], a theory based on general continuum
thermodynamics applied to a separating body, as well as on physical (atomic)
considerations, appears to provide a rational explanation to the problems
posed above. In our opinion the key to understanding these problems

can be found by incorporating into general continuum balance laws the in-
sight provided by physical theory [16,17], with regard to distributions of
energy quantities on the material boundary surface of a solid, even though
the densities of surface distributions will generally be some nine orders
of magnitude smaller than corresponding volume distributions for solids of
srdinary dimensions. For example it can be assumed that the total of any
energy quantity, e.g., internal energy, free energy, entropy, etc., of any
s01id body consi of a volume contribution and a surface contribution,
recognizing that for bodies of ordinary size, the surface contributions
will be many orders of magnitude smaller than the volume contributions.

if the surface is deformed and in a state of motion the same can also hold
for surface mass density and momentum. In the continuum mechanics of the
nonseparating body (which have muterially stationary surfaces, even though
the surfaces may be in a state of deformed motion) all surface energy dis-
tributions are tacitly ignored, and rvightly so, in view of the very large
order of magnitude differences.

for the separating body, however, (cf. Figure 10), while the surface energy
distirubtions over the materially stationary surfaces Sg = Sp + 5S¢ can be
ignored for the reasons mentioned above, the same cannot be said for newly
created surfaces due to a propagating ori Sp(t), which are materially
nonstationary, that can grow very rapidly with time.

Because of space limitations we will show only the consequences of

this point of view as it pertains to the total energy balance rate (First
Law of Thermodynamics), and, to the entropy production rate (Second Law

of Thermodynamics)¥ since these relate directly to the questions raised

at the ocutset. A full discussion of the balance requirements for mass,
linear momentum and moment of momentum, as well as a qualitative discussion
of the underlying physical (atomic) aspects of surface energies and entropy
on cut surfaces can be found in reference [15].

Let W, (G, & and K represent, respectively, the work rate of the applied
boundary tractions and body force, the rate at which heat is added or taken
out of the body, the total internal energy and the total kinetic energy of
the solid. Let &, P, n represent volume densities (per unit mass) of the

*In this work the theory of nonequilibrium (irreversible) thermodynamics
associnted with the Truesdell-Coleman-Noll point of view [18,19] is follow-

ed. The reader is referred to reference [15] for a more complete discussion.
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internal energy, the free energy and entropy, respectively, with p the ms
density and 8 the t@mperALu4" Furthermore, if g%, g, n*‘and N* represent
the corresponding surface densities, because of the orders of magnitude
difference between surface and volume densities, the relaticn between them
can be symbolically written . : )

A dot appearing over a quantity represents the material or substantial
time derivative

&tAthS stage of discussion no restrictions of linearity of deforma-
(kinematic linearity) are made.

/ ..;um.mg no form of interaction between the body and its survoundings other
than ?hrough mechanical work and heat, then at ecach instant of crack vpro-
pagation, the energy balance in the large requiy that

W+ Q= B[R] + R[R] + é[sy S e RS, + 5,
2 . )

v B[S0 ] + R[S RO

Because of condition {21) and the fact that

5¢ are materially station-
ary aur£4cw\, it follows that

B[S, + S.] = K[s

as in the customary practice in the continuum mechanics of materially
stationary (nonsepavating) surfaces. ’

fhe postulated global energy rate balance for the sepavating solid, i.e.
a body with a propag ating crack is thervefore

W+ Q= B[R] + B[R] + ﬁ{ﬂy(t)] * KIS (0], (22)

Tt can be shown that equation (22) has the equivalent form (cf. reference

[1sh)

,/ECTLEBJ ~ div q + oh - Q;} dV = g?vlgﬂ {y* + anx » 45%{2} dA
R ) o

(23)

ﬂ@re I is the Caunchy stress tensor, I is the rate of deformation tensor q
is the heat conduction vec tor, ph is the rate at which nonmechanical he :)x.tN
may be generated or lost internally per unit volume, % is the position
vector to dny point of the body and % is the vclorliv, while tr stands for
the trace operator. Note that allhonph the xn?oarlné of the surface in-
tegral on the Tight side of (23} may be very small, the material time de-
vivative over the f'aLrurjng surfaces Sp(t) dmplicitly includes the quan-
tity Ap[t), which is a measure of the crack propag atién speed and which
may be arbitrarily large.

As long as the crack propagates the right side of equation (23) cannot
vanish, nor can it be converted to a volume integral over R through the
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divergence theorem. Hence a direct devrivation of a local form for energy
rate balance from equation (23) is precluded.

ft is emphasized that as a consequence of the introduction of surface
quantities into the thermodynamic description of the fracture process, a
major departure from the mechanics appropriate to a nonseparating body be-
comes necessary.  All local equations for rate of balance {(except the one
for mass) are no longer obtainable as de 1vcd consequences of the postu-
tated global rate of balance equations, as is usual for classical contin-
aom mechanics, i.e., for nonseparating bodi In the

pagation they must instead be introduced as separate
alongside the global postulates. For a full discus
the reader is referred to reference [15].

case of crack pro-
dditional postulates
on of this question

Using the arguments given in reference [15], the local energy rate balance
must be introduced as a separate postulate in the form

tr[TQJ - div ¢ + ph - pé = 1) (24)

in the conventional point of view with vegard to the global energy balance
in fracture mechanics, it is customary to write in terms of the notation
cmployed here

W+ Q= B[R] + K{R}] + [' . (25)
The energy rate teorm [ is interpreted by some as a form of “energy dissi-

pation’ associated with the crack propagation, and is assumed, following
triffith, to be proportional to the fractured surface area [20]

e 1 > 5
= o [ Yo dA = ye A(t) . (26)

B ()

The proportionality factor vy, is ¢ mied to be a constant of the material,
variously ferred to as the "specific fracture surface energy," and “true
%urfaC" energy,' the "apparent surface energy,” or sometimes cven as the
"surface tension' of the solid, with physical interpretations that are
correspondingly varied. Perhaps the most common interpretation holds that
Yo represents the gnergy necessary to form o unit area of new surface. Of
course by placing I' to the right side of equation (25) it is acknowledged
thereby that crack propagation alters the total energy content of the body.
However, specification of I' by means equation (26) simply assigns a
constant surface energy density to the newly formed fractured surfaces with
ne vationale for such a cheice, thereby leaving the meaning of Yo somewhat
vague. It is also noted that, with iho addition of T as defined by equa-
tion (26) to the right side of equation (25), the local energy rate
balance (24) can never be obtained as a ucrived consequence. To the best
of the authors?® knowlec this fact has never been discussed in the liter-
ature.

The surface energ rate te in either equations (a“ or (23) are obvious
generalizations of the T Untrxhutxou to equation (25). It would appear
therefore that a general and rationally based definition of I' appropriate
to the consideration of crack propagation as a thermodynamic process should
be

(t)]

5L (t)] = {:{s}:(t); « K[S Y*(x.t)dA (27)
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where y*(x,t) is the thermodynamic surface energy density associated with
the fractured surfaces, i.e.

Y* = p* {wk + Bn* o+ % ;(.;(}

b

@

&

on SF(t) " (

Do

In general, it is seen that the surface energy density induced on the sur-
faces of a propagating crack consists physically of the energy due to the
deformation of the fractured surfaces through P*, the heat in such surfacs:
through 6n*, and the kinetic energy due to the motion of the separating

surfaces, 1/2 £*X. The energy induced on the surfaces of a propagating

crack, from a general thermodynamic point of view, is therefore seen to be
quite complicated, and certainly is in no way a general "material constant.”

The global condition for irreversibility, the so-called Second Law of
Thermodynamics, generalized to nonhomogeneous thermodynamic processes and
modified to include the surface entropy induced by the crack propagation,
requires that the rate of entropy production be nonnegative, or

P o= D[R] + PISg(t)] = d/pﬁ v + %E'v/” p*n dA - ‘/}- %‘q-n} dA
R SE(0) s s

S(t)
- J/ﬂ3- hdv > 0 (293
J 0 >0 . 29

P is the global entropy production rate and n is an an outwardly directed
unit normal vector to the surface S(t). Implied here is the condition that
the entropy production rate over the materially stationary surfaces is

negligible: P[SF + SC] = 0. Equation (29) can be equivalently representest
in the form ! :

P = ﬁpﬁ + div]| (L) q] - ~(»l)~ [.)]1}(1V+g—t—~f pEn* dA > 0 . (30}
R -~ S, (1)

Again, while the crack propagates the surface integral cannot vanish, which
again means that a local condition for irreversibility cannot be derived
directly from the global postulate (30). Employing the same reasoning
which led to equation (24) (cf. refevence [15]), a local form for the entr:
production of a separating body must be additionally postulated in the form

-~

Dﬁ + %»div q - ~%g:grad 0 - %'ph_i 0 . (31)

T

An important characteristic for a separating body can be immediately de-
duced from equation (30). For crack propagation that is induced by an
isentropic deformation in which the body is also adiabatically isolated,

A= h=0in R, q = 0 on S(t); it follows from equations (29) and (30) that

- d /’
P = p*n* dA > 0 .
dt SF(t) = (32)

in other words, crack propagation in an adiabatically isolated body can
never decrease the total entropy of a separating body.

In the limited space available several further important consequences of the
general theory are summarized. Assuming a purely mechanical theory of
brittle (linear elastic) fracture, the thermodynamic variables temperature
and entropy remain at fixed uniform reference values Og,ng, as does
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¢hie mass density pg. In the absence of a‘temperature gx“adlenti hea?scon-
Jduction vanishes and no internal source.ot beat g?negat10n~orh.:sih; o
assumed. Since gg = poh = 0 at each pO{nt in R, 1t‘i011?w>1; 3 formatioz
is adiabatically isolated. The volum? free energy 1in afsva : reference
theory, when expanded as a Taylor series abqut the unge Olmefaried =
.fate can be shown to have the form (cf. reiergnfe [15}]), refe

fixed rectangular coordinate system xy, k = 152435

. _ 33
" Cikam %5k Cim’ 58

[T

oo blejys B0) = Po Pol0, Bo) *

where e:, are the components of the linearized strain tensor an C'k%m are
the secbgd~order elastic coefficients. In strong solids r??tlébte o
small displacement gradients, the positive-definite quadratic form

L, e. e = ¢le.) (34)
2 Yikim Tjk Tlm S5

defines the elastic strain energy density of the deformed state, so that
the volume free energy can be written equivalently as

Po W(ejk, 00) = po Wol0,60) * ¢(ejk) . (35)

The first term on the rTight side of equation (35) represents‘the f?ee -
energy in the undeformed reference state, and is a measure of the 1n?r s
bind{np energy of the solid at the reference temperature, 8p. The linear

N £ ~3

elastic constitutive equations have the well known form

5., = 2 (e,

(36)
jk Aij

>

M 2]
ijlm €1im

& 5 | “auchy stress tensor.
where tjg are the components of the Cauchy stress

With fixed thermal conditions the volume internal energy %g ?3311¥v§hown
to be due entirely to the rate of change of the elastic strain energy.

. . : - f : - B[R] - (37)
E @ c dv o= f(p (e.,) dV = j t., e., dVv p[R] (
BiR] ‘]R‘QO € A ik R jk ik

In the absence of thermal effects in an idealized linear theory the global
energy rate balance (22 appropriate to brittle crack propagation reduces
to
. - . 1 »r .
W= OfR] + K[R] =+ S‘f—; f y*(x,,t) dA . (38)
o t o 1
Sp(t)

Correspondingly the general thermodynamic surfage energy density (28) in-
duced on the fractured surfaces reduces to the form

1 e - . 2
yr o= p[$r(0,80) + ¢¥eyy) ¥ Oon™ * g Uy ] om Sp(r) . (39)

where uy are the components of the displacement vector. ?he surface eger%y.
on the fractured surfaces thus consists of four contributions, respectively:
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;?zngiligggsfiieef??:%y at the refe?ence state, due essentially to the s TOnE T TR

density i QOMEELQEZ§ ?fvﬁ?e material surface; the surface strain energy

h There oen Bhe f.—oxmatl?n of the fractured surfaces; the latent hegf
‘races; and the kinetic energy due to their motion.

fhe edge-sliding mode of fracture (Mode [1) was defined and analyzed a
aumber of years ago. However, practical examination of Mode II fracture
been essentially ignored until recently. The lack of interest was
apparently due to the belief that the Kype toughness values are so much
higher than Ky. values for a given material that, as a consequence, iso-
tropic materials will not fail in Mode 1I. However, Jones and Chisholm

{24} have recently shown that this is not the case for 2024-T4 aluminum

5 for a number of other important structural materials [25].

primarily motivated by the present lack of knowledge
acture and by some ebservations of Mode II fracture initi-

For the self- agati .

figy ed-ggig" §f§§§ggt}ng ¢rack, i.e. for erack propagation under ideally

o £14 fjpad )?L{Flnns with body force neglected, the time rate of change

SBoe A (fj 3yant}tjes can now only be attributed to the changing crack&
L s an a linearized theory under "fixed-grip' Cogdiiions ‘

plate, as well as
ihis research w

3 - s s
° s AF . shout Mode IT f
: ation in frangible bases of highway luminaire supports.

Accordi
ordingly the general balance equation (38) takes the form

fn oerder to develop an understanding of Mode 11 fracture, the compact

shear (CS) specimen shown in Figure (11) was conceived and then analyzed by
boundary collocation techniques using the complete, asymmetric Williams
stress tunction [25,26). Due to the symmetry of the €S specimen about its
centerline, it was necessary to analyze only one-half of the specimen. The
analytical method was based on requiring Williams' [27] eignefunction ex-
pansion of a stress function, X, to satisfy the boundary conditions at a
finite number of points around the specimen boundary. Also, since the
specimen was asymmetric about the crack tips, it was necessary to employ
the complete Williams stress function (symmetric and antisymmetric parts)
in the collocation analysis. The stresses and stress intensity factors
were obtained as a function of x and it was determined that the Mode II
stress intensity factor was given by

K = \2m By g » (a4)

Bd, the first odd coefficient of the series expansion for x (the
cient of the antisymmetric r=" term for the stresses) .

while {39) becomes E

'Y* =6 Kk I ) 3 P . 1
PolWT(0,00) + ¢*lesp) + Oon* + i . D

Equation (40) is a nonlines i i

eguatinn é;;)tég fr??iliﬁea?.ﬂqgutlon In Ap(t) which serves as the governi
fid Robors aﬁd‘wgl?: (pfopagaﬁlun speed. It has in fact been usad&by Mot
tions) e e qtaft}dv(WJ?h~5ev?ral 2 t@er drast simplifying approxima-
$e]f~pr0papati£v(¢r}?§ ?OLng for an estimate of the terminal speed of the
Equaticn'(il) dimoni¥ ?%?nl?g ?C‘COHE ant velocity in brittle fracture.
Bf the getahe ;nﬁr:yriiiotﬁipil?}t]y.t?e nonlinear crack speed dependency
experimentaily {21M33'" -1e sell-propagating crack, recently observed

wher
coef

Since only one-half of the specimen was apalyzed it was necessary to de-
termine the distribution of normal stresses along the centerline, E-F (cf.
Figure 11). Both linear and bilinear normal stress distributions were
assumed in the stress analysis [23] and a subsequent oblique incidence
photoelastic experiment was employed to determine the actual stress dis-
tribution. The photoelastic experiment verified that the bilinear stress
distribution provided the best first-order representation of the centerline

L ohie

Let Y& desig G 8 3 ‘ace 52 S 5

e b(‘ . f.ﬁ]:]at{‘ 1]’12 surtace E:I;l(,'l.’\g’f)’ for a slowly expandiuy crack as

in subcriti 2al orac growth 11 0 SO 5 1 T el MY’ :
& > (1l!< uk) << 1 on \‘x}._.( i ) = hen C](".‘i..'l}'

YE < yx o,
(42

-1

The surface energy j
E nergy induced by suberitics - 3

the surfac G ke ¢ Yy .‘),1it1cal crack growth is nlways — i
surface energy associated with a fast propagating crack ¥ ‘tess: Ehan

ses.

Finally it ig
L1y 18 poted that the rat;
- Lne ratio
The boundary collocation method was solved numerically on an IBM 360-65
computer and good convergence was obtained when the computer program

coliocated on the stress function and its normal derivative. The program

v . 3uk du,

e = + il s 22 2 M 5 i 2 g

\g DA, 9A Ay < Db (43) was then exercised to determine the effects of variations in specimen geo-
¥ F - ) metry on the Mode T1 stress intensity factor and. thus, to optimize the

MUSt have an upper - ) specimen geometry.
that the Crarklggngo?ndlio; 501*“Pfopﬂgutjng cracks since experiments show
nQe - speed Ap has a maximum speed of ¢ % ’ o "

elastic shear w: . s : speed of the order of one-half the
SHARE ndith r;edévf prgpagdtjon speed.  Inequality (43) disagrees ;n ono(re

mental aatarof iz;ults r ror?ed in reference [22], taken from {hc experi

ntal - ‘erence |21 in whicl ati *fvr b or -
nonlinearly with SRR o »41_,‘ i.ch fbe‘?dtJO Y*/Y%. although increasing
speed, a Tesult whic speed, approaches infinity at the terminal crack )
-5 which, physically speaking, is highly uniikely to 6vcﬁr

or analysis of the €5 specimen existed, it was decided that
analysis should be conducted to verify the Mode IT crack-
tribution and the stress intensity factors. To accomplish
men was fabricated from Hysol resin 4290-CP5 with the

H o= 24.4mm and B = 7.14mm. A conventional trans-

Since no pri
a photoelastic
tip stress di
this a €S spe
dimensions, w = 95.0mm,
mission photoelastic experiment was performed in which both light and dark
field results were recorded [28]. 'The photoelastic analysis verified that
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the desired Mode IT stress distribution existed at the crack tip. Also,
the Mode Il stress intensity factors obtained from the photoelastic result
agreed quite well with the boundary collocation results as seen in Figurs
12.  The stress intensity factors obtained from the boundary collocation
program are given in Figure 12 as a function of a/w for linear and bilineas
normal centerline distributions. It was concluded from these results that
the stress intensity factor could be given by

Kip = © a2, 0.3 < a/w < 0.7 (453
and

Kyp = 1.080 a2 a/w = 0.8 (463
to within an accuracy of two percent. Of course, these particular values

of the stress intensity are only valid for the dimensions of the photo-
elastic specimen.

Testing and results

After the analysis of the CS specimen was completed, an experimental
research effort was initiated to ohtain some knowledge about the Mode II
fracture characteristics of several aluminum, titanium and steel alloys.
Two specimen geometries, which differed slightly from the photoelastic
specimen, were employed using H = 28.6mm and w = 63.5 or 76.2mnm. The
smaller w values were selected for the purpose of reducing the fracture
load. A set of Mode I fracture mechanics grips was designed and fabri-

cated so that the displacements could be measured using a standard fracture

mechanics clip gauge. The experimental procedure was designed to follow
as closely as possible the Mode I fracture toughness test specifications
established in ASTM E399. For example, the five percent secant offset
load was used in the appropriate formulas for the stress intensity factor.

The primary objectives of this testing program were: (a) to examine the
characteristics associated with fracture in the edge-sliding mode, (b) to
ascertain the effects of specimen geometry on Mode IT fracture, and (c) to
establish geometry-independent Kite values for various structural material:
The first objective was of considerable interest because of the viewpoint
held by many researchers that isotropic structural materials will not fail
in the maximum shear direction. However, all of the medivm and high tough
ness materials that were examined as part of this testing program failed
in unstable fracture along, or close to the plane of maximum in-plane sheas
ing stress (along the plane of the initial crack). In most cases the dir-
ection of crack growth diverged less than five degrees from the plane of

maximum shear. The fracture surfaces on these specimens were much flatter
and brighter than the Mode I fracture surfaces for the same material. Both

features were determined by subsequent examination to have been caused by
the abrading action of one fracture surface against the other resulting
from the parallel displacements associated with the edge-sliding mode.
Many of the fracture surfaces have been examined by optical and scanning
electron microscopy. It was concluded that the primary failure mechanism

was shear microvoid coalescence and also that most of the surface abrasions

were created during unstable crack propagation, rather than during crack
initiation [29]. A photograph of a typical Mode 11 fracture surface is
seen in Figure 13.

1. Liebowitz, J. Eftis and D. L. Jones
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The second objective-determination of the effects.0§ specimen geomet:y

on Mode 11 fracture-has only been examined in a limited wannerk It has
heen observed that crack tip radii below O.lSmm,’a/w ratios, and spec1meﬁ1
thickness apparently have limited ctfect on the Kite values% H?wev§§i only
the specimen thickness was examingd in a systematic manner for JeYegx .
structural materials. Thus at this time it is reasopab%e'to conc_ufe only
that these variables in the ranges examined do not significantly influence
the Mode II fracture toughness values.

An example of the satisfaction of the third quecgive 1§ pr?seﬁtfdl}n een
Table 2, which gives Kyj. values for only a few of the tes;s t a; \av:h e 3
performed. The subscript ¢ was used for these toughness va}yes b¥ﬁﬂ : oug
no validity criteria have been established for Mode e test%ng._ .? ¥% .
values were also included in Table 2 for comparison purposea.‘ It 1>Kno e
first that the Kyj. values were npproximate}y twice as large as.th? ){Q
values for the 7075-T651 and 2124-T851 alumlngm al}oys. However, bp%bl:
wens from both alloys failed in the Mode II dLT?CFlOn and fractured in an
unstable manner after a limited amount of subcritical crack growth.

for the A533-B steel it is seen that the Kyy. values are much’lower than
estimated Ky, values (no valid Kj¢ testslhave been cgnducte%.at ﬁooT i
temperature because of the very large thlcknesg requirements) . Igw&var;
sxtensive crack-tip plasticity was observed prior to uns?ablg f?acture‘in
these tests so it is doubtful whether linear trqature criteria could be
properly applied to Mode II tests on this material.

The results of the tests on Ti-6AL-4V in the B forged condition are pr{cal
of the one shown in Table 2 and indicate that Kyjc values w?re generally
15-20 percent below the corresponding ch values. _Th§~tests on thg Eli??lum
alloy resulted in very limited plasticity so thaF it is probable tha ey
can be properly treated by linecar fracture techniques.

As a rvesult of these tests and others [25] it has been concluded‘that ﬁoée
1I fracture can represent a practical fracture mode when strgc?u{%l 1?&db
are applied in the Mode II directio?. It also apPgérs thzt follusriazzresg
alloys unstable fracture can occur in the edge—sllqmvg Mode dt{lofe~-% g
intensity values than in the opening @ode. In addlth?? Modc o .r?L ure
also appears to represent a Very»signlflcant technological problem for
anistropic and composite materials.
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Error Involved by Use of Equations (14)

Table 1. :
to Obtain Equation (20)

P 2 -
Biaxinl Load Factor o Q 1 2 3 -1 3
o AL 32 0 U2 7 =7 11 2 id
C T
Table 2. Comparison of Mode 1 and II Fracture
Toughness Values for Several Structural
Materials
Material Thickness a/w Ratio Kite ] Kie -
K} MPa\Fn MPa\[ m
7075-T651 9.55 0.548 56 26
2124-T851 6.35 0.547 59 30
AS533-B 6.35 0.697 69 132-220%
Ti-6A -4V 9.53 0.700 74 88

*Estimated range of values
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Figure 1

Typical fracture mechanics test results showing crack-
tip plasticity and subcritical crack growth
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Fracture toughness of 7075-T6 sheets as a function
of gauge length, evaluated at the onset of sub-
critical crack growth and at peak load
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Figure 3a Variation of toughness parameters with specimen
thickness for 2048-T851 (L-T) determined at peak
load (incorporating subcritical crack growth)
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Figure 3b Variation of toughness parameters with specimen
thickness for 2048-T851 (L-T) determined at the
onset of subcritical crack growth



H. Liebowitz, J. Eftis and D. L. Jones 1. Liebowitz, J. Eftis and D. L. .Jones

Fracture 1977, Volume 1

Recent Developments in Fracture Mechanics

AT fe {14

! T
Figure 4 Plane biaxially loaded center-cracked geometry Crack 0 0.002 Crack g 0.002
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Figure 5 Error in the conventional shear stress calculation

near the crack tip, for 0 = 20°
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Figure 9 Local crack-tip region
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Figure 10 Crack propagating in a body
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Figure 13 Typical scanning electron micrograph of a Mode II fracture
surface of 2024-T4 aluminum
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The compact shear specimen and associated coordinate
system for mode II loading
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Comparison of effect of linear and bilinear stresses along
specimen centerline on nondimensionalized stress intensity
factor w = 95mm

a/w

~d
+a
[




