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ELASTIC/PLASTIC SEPARATION ENERGY RATE
FOR CRACK ADVANCE IN FINITE GROWTH STEPS

A. P. Kfouri* and J. R. Rice**

ABSTRACT

Yith-type energy balance for crack growth leads to paradoxical ve-
solids that are modelled as elastic/plastic continua, since such
ovide no enerygy surplus in continuous crack advance to equate to
¢ of eeparatiom [1]. An alternative proposed recently is that the

« sine of the fracture process zone be taken into account, and a

2y of doing this s to define a crack tip energy release rate ab
st the work of quasi~static removal of stresses from the prospective
urfaces over a finite crack growth step ba [2]. Recent finite
sesults for energy releases during crack growth are reviewed in
and an analytical solution, based on the Dugdalcwﬂllbu ~Cottrell-
(DBCS) erack model, is developed for GB when Da 15 small compared
2 ‘ze.  This solution and the finite element results are
bly good agreement and, based on the analytical solution, we

the asymptot formula fJP the value of the J zntegraé requzred

b growth, J = .70 § exp(.43/1) GA, with ¢ = (1-v )0 2pa/EGD, and
is vatlid whenaver o 1s smaller than, approxlma#ZCJ, 0.15; oy
ld stress. A defect of the DBCS model, however, is that unlike
element results, 1t makes no distinetion between the ceriterion
st of growth and that for continuing growth in the case of highly
: solids.

HICTTION

cet work in elastic/plastic crack mechanics has been successful in
iiving "characterizing parameters" (J,ét) for the crack tip deforma-
ield, and the condition for onset of growth from a pre-crack can be
i in terms of these. But no similar characterizing parameter has
#n identified for stably growing cracks. Indeed, it seems likely
s useful general parameter exists, defined independently of the
wriile details of the crack tip deformation field. Thus it appears
necessary to have some kind of model of the crack tip separation

i on which to found a suitable approach to crack growth. Such a
«1, while necessarily limited in respect to how closely actual separa-
nrocesses could be described, would nevertheless lead to definite
iotions of conditions necessary for the onset of growth, as well as

i» {or stable growth to exist at all and for stable growth to give way
4 terminal, running fracture instability.

first inclination might be to generalize the Griffith approach by
#ing that the non-ideally brittle material has some characteristic
i separation, per unit new crack area, and that this is to be equated
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at the critical condition to the surplus of work done on the material, !
external loads, over the energy stored or dissipated by stress working

during a unit increase in crack area. A tacit assumption in such an apy
is that the energy transfers can be decoupled, in a manner that calculat
of the energy surplus can be based on the mathematical solution for a «
cut continuously ahead in whatever continuum model (elastic, elastic/pl
viscoelastic, etc.) is considered representative of the material at hand

For perfectly elastic materials, the Griffith approach seems quite suit
at least to the neglect of certain lattice effects, and essentially exac
agreement is obtained between it and a singularity-free model of the cy
end zone, in the spirit of the Barenblatt model, but in which a definit
relation between restraining stress and separation displacement is assu
to apply in a small but finite crack tip cohesive zone [3] =

But the temptation to generalize the Griffith approach for other contin
must be avoided. Rice [1] has shown that serious paradoxes arise for
elastic/plastic materials; when stress-strain relations for these entail
the saturation of flow stress to a finite value of large strain, it is
evident that thers is no singularity in recoverable energy density at th
crack tip, and one may then prove that there is zero surplus of work don:
by external loads over stress working on the deformation of material el
Hence fracture according to the attempted generalization of the
ith model cannot occur in such a material.

Recently Kfouri and Miller [2] confirmed this behavior in an elastic/
plastic finite element solution for a growing crack. More significantly
however, they also suggested a way in which an energy balance concept cc
be used to model] crack growth, but in a manner which involves only rathe
simple calculations from the standpoint of numerical solution methods.

The method recognizes explicitly that there is some finite size scale

associated with the crack tip separation process and therefore computes,
a4t the continuum level, the work done in quasi-statically and proportion
ally reducing to zero the stresses which act over a finite growth step

size Aa ahead of the crack. This distance is considered characteristic
of the material and, if -AW is the work of unloading the initially stres
ed segments of crack wall, per unit length along the crack front, then t
separation energy rate is defined by

(.‘A::‘/\_W
T Ba
. A - .
For crack growth G must equal the work required for separation, namely
Gé, which is also considered characteristic of the material.
Note that for elastic materials GA is essentially independent of Aa, wh
Aa is sufficiently small, and hence it is appropriate to take the limit
Sa > 0. But elastic/plastic materials give G2 > 0 in this same limit,
Rice's result [11,
Particularly, the issue here is the size of Aa in relation to the size of
the plastically deforming region at the crack tip.

In the present work,
ate

we leave open the question of how physically approy
stch an approach is as a model of the fracture process. It is obvic
t one can have models at various levels of complexity, and this one u
ve its limitations. It is, perhaps, the simplest workable approach

among the c¢lass of models which might, loosely, be described as "energy
balance” or "cohesive zone'" models. Certainly, it has the virtue of bei
easy to employ in calculations, and some promising results based on it h

h
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+ demonstrated by Kfouri and Miller
f¥sotures of steels.

[2] for low-temperature cleavage

element results of Kfouri and Miller [2, 4] are briefly reviewed
ed in the present framework in thg next section. Following that,
“arry out the analytical calculation of G for the DBCS crack yield model
ire results with the numerical calculations. We find these to be

¥ reinforcing, in that the general trend of G with Aa, predicted
ically, is well-matched by the amalytical calculation. Further, the
tical calculation suggests the proper asymptotic form of the variation
with Aa when the latter is small in comparison to plastic zone dimen-
#.  In this way, our calculation here allows the extrapolation of numer-
i =olutions into a range well beyond what it is feasible to compute
#omically by finite elements.

ate in passing that paradoxes in energy balance approaches to fracture
feria arise in other models of continua, but that these likewise seem
Bw resolvable when the finite structure of the crack tip separation zone
smnted for in some manner. For example, Kostrov and Nikitin [5] show
tinear visoelastic solids that appropriate rate dependence of the crack
wih criterion is not predicted from an energy balance based on a contin-
¥ advancing singular crack tip model, but that the problem is resolved
+ models that entail a Barenblatt finite cohesive zone at the crack tip.
. Rice and Simons [6], in a recent solution for shear crack growth in
sid-infiltrated porous elastic solid with coupling between deformation
tarcy fluid diffusion, demonstrate a similar paradox. Here the ex-
Griffith elastic result for the limiting case of rapid, undrained
mation is not obtained, but they show that the proper limit is estab-
in a model that entails a finite shear breakdown zone at the fault
“ince the linearized equations of porous media are precisely anal-
* to those of linear coupled thermoelasticity, this suggests also that
« will be a similar paradox for a thermoelastic material model at the
t of rapid isentropic deformation, although the difference between
fiermal and isentropic moduli for most solids is too small to make the
«t significant numerically.

Lk TIP FINITE-ELEMENT NODE RELEASE METHOD

i and Miller [2, 4] carried out an elastic/plastic analysis on the
*r cracked plate in plane strain, shown in Figure 1. The plate was
at the boundaries by an applied stress Op normal to the crack and
#rul applied stress On parallel to the crack. Here, only the uni-
mode 05 = 0 will be donsidered. The properties of the von Mises
#s#terial are also given in Figure 1.

‘tic loading up to incipient yielding at the crack tip was followed by
ental loading to several applied load levels corresponding to diff-
it crack tip plastic zone sizes. For each load level a crack tip node
isuse technique was used at constant applied stress to calculate the

E separation energy rate. Four crack tip nodes were released success-
and the energy rate was evaluated for each release. Figure 2 shows
p#ieal plastic zone size developed during the initial loading stage
* crack extension has taken place and Figure 2b shows the same mater-
#t the same load after the four crack tip node releases. The computer-
swn deformations are exaggerated by a factor of 50. The initial and ex-
#d crack profiles corresponding to the next higher applied load level
vhown in Figure 3 on which the elliptical profile for an elastic

~
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material has also been drawn. Note the blunted crack tip associated with
the 1/x type strain singularity [3,7] before crack extension and the sharpe:
crack profile associated with the Log(l/r) type strain singularity [7,8]
after crack extension has taken place. The equivalent plastic strains in
the immediate vicinity of the crack tip were, for the static crack, about
twice the corresponding value when the crack had extended.

The crack separation energy rate GO can be computed by imagining that the
surfaces are held together over distance Aa by an imposed stress field in
equilibrium with the applied loads and constraints. Assign to the imposed
stress field a load factor, initially unity, and gradually reduce the load
factor to zero so that the surfaces at Aa are released quasi-statically at
constant applied load. Calling AW the energy absorbed during the crack
opening, G is computed from (1).

The crack separation cnergy rate is intended to measure the energy avail-
able to separate the surfaces over Aa. Since the growth step Aa is assumed
small compared to the average body dimensions, e.g., the half crack length
a, in an elastic material G2 is sensibly equal to the Griffith energy re-
lease rate G where
ap

G = J = - Py (2)
and P is the potential energy, i.e., the sum of the potential energy of
the applied forces, op and 0y, and the strain energy, and J is the path
independent contour integral [3]. If the material is linear elastic, we
have further,

=62 (1-v?)Ki/E (3)

where Ky is frwin's mode I stress intensity factor and E and v are Young's
modulus and Poisson's ratio for the material.

Dependence of GA on crack tip plastic zone size
P PI

For an elastic-plastic material in small scale yielding, the crack tip
plastic zone size is proportional to (KI/Oy)Z, where oy is the yield stress
in a uniaxial tensile test. Thus the ratio of jump step over plastic zone
size is proportional to

2

S = (o_/KI)‘ Aa
Y

The analysis shows that at the same value of the applied load, 8 decreases
and eventually vanishes as S decreases towards zero, as predicted on geners
grounds [1]. This is illustrated in Figure 4. At the other end of the
scale, for the largest value of § = 0.457, b is essentially equal to J
or G for the elastic material.

Figure 4 also gives values of J/G at different values of S. Note that for
values of S larger than 0.071, J/G is less than 1.05 but the ratio J/G
rises rapidly when S is less than 0.071, indicating deviations from "small
scale yielding" conditions for this geometry. Here J as used is always
defined as the contour integral taken in the elastic zone, and we sub-
sequently will normalize results with J rather than G as a means of account-
ing, at least approximately, for large scale yielding effects.

A somewhat different measure of ductility, analogous to 5, but which arises
in our later calculations and involves only those properties which are
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«d characteristic of the material, is given by

(1-v*)o?aa
F o e (4)
EGA

‘e velations in Figure 4 can be presented in terms of ¢ in the form

Lo = x(@ &)
G i

5 gives the ,x dependence.* When ¢ = 0.457 the material response
war (this figure may vary a little according to the finite element
i which the results ave based) and J = G2. When ¢ is very small
secomes very large. A brittle to ductile transition value [2] for g
e Jdefined, approximatley, as gr =~ 0.091.

Fravture

iterion

curve can be used to represent dependence of the critical value

uﬁ when the fracture criterion for crack extension is GO = G%. Here
rie eritical value of GA for the material in the current state. The
sible assumption was made in [2] that G@ and Aa are constant in the
idered range corresponding to values of 4 larger than Zt; these values
yepresent the states of a material at different temperatures within a
seature range varying from the transition temperature Ty to a very low
svature Ty corresponding to nil reduction in area in a uniaxial tensile
issuming that only the plastic flow properties, but not Aa or GR,

th T. The critical value of Gé was taken to be G.p, i.e., Gy. at
tomperature Ty, Then, from (3)

(1-v?)K

G, = -~

b (6)

wrere Kyop is the fracture toughness at the temperature Ty, - While thus far
wd experimentally only in relation to data on cleavage in steels [2],
wme concepts may be useful, with suitably chosen Gé and Aa, for more
f1i¢ mechanisms of crack growth.

“isitial condition' curve and steady crack growth

large plastic strains which cause the tip to blunt are generated

: the initiation process and are concentrated in a small region
immediate vicinity of the crack tip. The associated initial stress-

we found to have a short range effect on GA; only the first tip node

e values were affected in the considered X range (x < 4.54). The

#iid 5,X curve in Figure 5 represexts the 'steady condition’ values ob-
inod from the average values of G”/a, calculated from the last three tip

i voleases at a given load level. For plastic zone sizes corresponding
¢ » 3.35, the values of G%/a calculated from the first crack tip node
irune were larger than the averages for the next three node releases and

* © unmd x are related to the parameters ¢ and | in [2] by

T = .457/¢, X = JY/Gd.
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were used to describe the 'initial condition' curve shown dotted in Fig.
The difference between the initial and steady condition curves is also a
reflection of the varying crack profiles and associated types of strain
singularities mentioned earlier, as the crack penetrates into the plastiz
zone. Consider a material in a state given by £ = .10, say, and let an
increasing load be applied, represented by an upward vertical displacement
of the state point in the C,X plane. When the 'initial condition' is rea
the crack begins to move but as soon as it has penetrated a short distance
into the plastic zone, the 'initial condition' curve is no longer applicah
As the load is increased further steady crack growth takes place and inst
ity occurs only when the solid curve is reached. For values of g larger
0.127, catastropic failure is not preceded by steady crack growth, acco
to the present model, since the solid curve is the first to be reached.

Thus the results suggest the occurence of stable crack growth in suffici-
ently ductile materials (g small) but not in more brittle materials.

GA CALCULATION FOR THE DBCS CRACK MODEL

Here the DBCS model is employed as a basis for the calculation of G2 in
the ductile range, say ¢ < 0.15, which corresponds to a step Aa of small
size compared to the plastic zone dimension. The model is, of course, a
very much simplified representation of crack tip yielding but, as will be
seen, it enables the calculation of a simple formula relating J to G2 whi
is in remarkably good agreement with the finite element results and enabl
their extrapolation to a range which could not economically be computed.
Figure 6 shows the model and, to simplify the calculations, we follow
Rice's ([7], p. 264) small scale yielding formulation in which the crack
is viewed as being, effectively, semi-infinite with asymptotic approach
to a surrounding elastic singular field of intensity factor K. The crack
surfaces are held together within the plastic zone, of size wy, before the
crack advance, by the uniform stress Y. The stress Y is expected to lie
between the tensile yield stress o, and the Prandtl field stress [3] 30
on account of the triaxiality and Kydrostatic effects; it is generally
agreed that a value in the neighborhood of 20y is necessary to make the
crack tip opening displacement of this model coincide with more exact pre
dictions. A close estimate of Y will be obtained later by comparing the
model with the finite element one.

Since the material is linear elastic for the purpose of computing the
stresses and displacements, solutions for different loadings can be supers
imposed. The singularity of strength K, caused by the applied loading,

must be cancelled by an equal and opposite singularity K' resulting from
the stresses Y, so that a bounded stress results ahead of the crack tip.
Thus

= ' =
Knet K + K 0

The value of K' is obtained by using the solution for a point load p(r)dr
on the crack surface ([7], eq. 98),

K' = (2/m¥Pr " 2prydr = - (2/m) Y2y or=12gy
P

and from (7)

K= -K' = gAEZTY\I% (5
T
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tiew the plastic zone dimension w, as

o g2
Wy = i S . (9)
8 Y?
fotadl separation between the upper and lower crack (or plastic zone)

% is denoted by §, and this is expressed by superimposing the effect
wpplied loading and of the stresses Y to obtain

' K (=} v [ r
“%T(ﬁ-‘) TE Y% Fla

i/(1-v?) and the function f(...) arises from the solutiop for
cading of crack surfaces adjacent to the tip. This function
i 4 term which varies as rvz, and which is cancelled by the first
m in the equation for § so that the net effect is smooth closure
plastic zone surfaces at r = 0. Thus the expression for & can be

it the form
s £ 10)
= =w.  gf{— , (
E*' To (w())
the function g(...) is given by ({71, eq. 223)
; 8 § 1 +YA ;
g(A) = 5 \}/\ -5 (1-1) fog [—— 2= (11)

tion of separation energy

wih step is assumed to be smaller than the yield zone size w,. As
tip release over Aa begins, Figure 7a, the stress Y acts over a
+u(= wo - Aa, initially) and a stress o(= Y, initially) acts over
ring the release, Figure 7b, 0 varies quasi-statically from Y tg 0
from w, - Aa to wy again when full release has taken place. As %llus—
i, we assume proportional release of the stresses acting over Aa in
iivulation; the final result for GO will, of course, be dependent on
wiay details of the release process.

#imilar argument to that used previously and by decomposing the stress-
fe o acting over w + Aa and (Y - o) acting over w, we get

Koo = K - V2 v . 2V2 Y - )VT = 0
ne V"(‘l"‘ V.'n_.

suning (8),

Y Vo, - oVo + 8a - (¥ -0y Ja =0, (12)

by the same argument as used previously, the displacement distribu-
¢+ during the release process is given by

. g i z Y-o z
$ = w7 (W + Aa) g(m) il g(m) (13)

e
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where r is as defined in Figure 7b and g(...) is the same function as in
equations (10,11).

As illustrated in Figure 7b, we let AS be the displacement given by (13)
minus the displacement given by (10), so that AS is the alteration in open
ing of the plastic region during the load release process. Hence, at some
material point at distance x ahead of the initial crack tip,

+ Aa - ¥z a -
Bg = é%’ (w+Aa) g(%w++AZa x) * E'o w g (w T ba ‘)

w
Y Wy ~ X
-y U @ (—‘—’-—~) (14)

Now the crack separation energy rate as defined by (1) is

A 1 xX=Aa g=0
Go = XZM/K “/r o d(A8)} dx . (15)
X=0 a=Y

Noting that o d(A8) = d(oA8) - (AS)ds, and observing that oA8 vanishes at
both limits on ¢, this can be rewritten as

x=Aa o=y X=Aa fw=w ~Aa
A 1 ) 1 [¢] 1o
G = AS do dx = Z— AS £9
i Aa o f=o Aa / T dw dx{

= X=0 w=u>0

16)
where in the last form of the integral, we recognize that O can be written
as a function of w from (12). 1In fact, the relation is

Vo, -V
w+Aa _\ﬁT ’

do _ ) Y \/m+Aa -P\/(S‘--\[(T);
Zﬁ\lw«r[\a (\/m-%-Aa \[J)

dw
At this point we insert (17) for 0 where it appears in the expression (14)
for A8, and then insert AS and do/dw, from (18), into the integrand in
(16); these steps express the integrand in terms of the variables of inte-
gration, x and w. The final result is rather complicated and to simplify
its presentation we introduce the dimensioniess step size € = Aafg, we
define X = x/w, and Z = 1 - w/w,, and we note from (9) that

g =Y and (17}

(18)

2
T _mo ok _w
E' 8 EY 8 >
where the small scale yielding context of the DBCS analysis justifies
writing K*/E' as J. Then the energy release rate can be written as

it £
GA = g F (X,2;e) dZ dX
o] [o]

where the function F is
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3 m 1 - 1—£~ ; l+e-Z~-X
F(X,Z25€) = +r— |z (1ve-2) g |
16 [\/1+5;—Z - ‘\/I:E 1+e-2

1:5:5:1) - g(l-x)]
1-Z

L

Vi-z Vire-z (Wive-z - \1-2 )

{ wheere the function g(...) on which it depends is defined by (11).

i

protic formula for small step size, © = Aa/wg << 1

i

tion (19) as derived is valid for all € < 1, but here we are primarily
vested in the result for small growth steps, by comparison to plastic
© size, and thus it is appropriate to develop an asymptotic expression
wf 119y for the small € range. Note in this case that we are always in-
ferestoed in knowing the function g(...) when its argument is in the neigh-~
wiodd of unity, and in that case (11) leads to

g(lvn) = & [1 + L usog 7317(' + 4 u fog(de) ] (21)
> ¢ is the natural logarithm base and where the neglected terms are
«w order u®2oglul,u®, cte. Using this expression in (20) for F(X,Z;e)
ring that X and Z, as they enter the integrand in (19), are of the
srder as £, the function F bas the expansion

F(X,Z;¢) = ""1"%' g (e-2) [x Log i + (£-X) fog

>Ki<1 + EiZ§> + e (2-Z) log (de) + ...€ (22)

substituting this expression for F into (19) and performing the inte-
itions on X and Z, we now find that

GA = ]‘ .J [E 2o é + (3 + Log 4) £ -

£ fog + + ] (23)
2

- 2 3
whore now the neglected terms are of order £°, ' fLog g, etc.

i

dixcussion of the result (23)

irst, we observe that as the step size € = Aa/w, approaches zero in (23),
4o indeed obtain the anticipated [1] null energy surplus, G® = 0. But
small yet finite, say € < 0.20, it suffices to retain only the first
+ terms within the bracket of (23), namely
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hins been noted earlier, this is a very reasonable value for
the DBCS model to more exact plane strain analyses.

G

sfrzontal axis intercept in Figure 8 is at 4.704 so that the straight

2 1 o
T J (Zog ol 2.866)
2 irawn through the finite element results has the equation

where 2.886 = 3/2 + Qog 4.

5 . . . WA . ez
A more useful point of view is to consider Aa and G- as given dquantities,

. m o J e f -
characteristic of the material, and to solve for J in terms of them. To L20g 8T A = (.275 o 4.704
do so we write the DBCS effective yield stress parameter Y as Coy, where G >
C is a constant to be chosen to fit the DBCS model to more exact plane Cow ’ ) Ny
strain elastic-plastic solutions, and we note from (9) that = (0.275) T 2.585 + 2og (1/0.275) . (29)
or2  (1-V%) o 2 Aa this with equation (27) and recognizing that C? = 1/0.275, we see
e = éﬂ.: §'Xb Aa = ser Ty T q the DBCS constant term 2.886 of equations (26) and (27) is fairly
“o T K T EJ ‘ched by the finite-element results, the latter being best fit by
vym 2. 585,
This may be re-expressed in terms of z = (1-v¥) Gy:.a/EGA, the dimension-

i ; 2 X . N = i¥, writing equation (29) in the same form as (26) we obtain
less step size parameter introduced in equation (4) and used in Figure 5.

In particular, J = 0.698 7 exp (0.432/c) e P (30)
2 A
- . 86T %_ P (25 is evidently a close mathematical description of the solid curve
T

the finite element results in Figure 5 for small £. If the DBCS
‘86 were used instead of the best-fit term 2.585, e.g. as in equa-
'6), the effect would be to reduce the pre~-exponential term in (30)
+17, with no change of the exponential term.

and upon insertion of this into equation (24) we may solve for J as

8c?
J = T b oexp

2.886) ¢ . (263

wpartant aspect of the finite element results, not reproduced in the
stel, is that there is a distinction between G for the first crack
th step and that for subsequent steps (compare the "initial condition"
ady condition" curves in Figure 5). This suggests that a critical
erion, with associated step size paremeter  of (4), provides a
work that will predict some amount of stable crack growth, following
ition, in sufficiently ductile materials (say, those with ¢ < 0.12).
failure of the DBCS model to predict this is a serious shortcoming
 experiments on pre-cracked ductile metal specimens are well known
- show some stable crack growth.

DISCUSSION

Equation (26) from the DBCS analyvsis can be rewritten in the form

gog { T

8z

zl - 2.886 + fog C? . (271
the somewhat arbitrarily chosen transition value Lt = 0.091 shown in
Thus the left side of this equation, when plotted against 1/7, gives a iwve 5 is used in equation (30), we compute that
straight line, and the result is valid when T is small (or 1/r large).

Further, if the finite element results are to agree with the simple for-

mula (27), based on the DBCS model, then they too should plot onto a Jt cht = / ]
straight line for large 1/z. EE ] T = KIct = 2.7 Kfcb s (31)
c Ich

In Figure 8 we have plotted the left side of (27) according to the finite-
element results, versus w/2¢, using all the computed points (crosses) de-
fining the "steady condition” curve in Figure 5. 1t is scen that the
points corresponding to large values of 1/i (say, for ¢ < 0.15) are fit
excellently by a straight line relation. Further the slope of the best
fitting straight line defines, according to (27), the value of 1/C*.  This
we find to be 0.275, so that € = 1.91 and thus

for a material with temperature-dependent yield stress (but Ué and
umed T-independent, [2]), Kiep is the toughness at some low termper-~
Ty, for which J is essentially equal to GR at fracture, because the
1id zone size is small compared to the fracture step size Aa. Thus if
» is used to compute G@ through the usual elastic fracture mechanics
wila (3), then by establishing the vield stress Oyt 4t the temperature
for which Kye = 2.7 Kicp> and assuming that this corresponds to g =
0.091, the step size Aa associated with the experimental data can be
iuulated from (4) as

Y=C0o = 1.91 0 .
Y

& 2 2, T
Aa = 0.091 kfcb/ayt . (32)
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(This is an alternative to a method suggested previously [2] based on de-
termining Oyp at the temperature Ty. Note that (Oyb/O t)':=5)4 Of course
the method assumes that a temperature Ty, for which’J = G4 at fracture act-
vally exists; it may not in some cases, and then Gé and Aa must be deter-
mined through a more elaborate fit to the results in Figure 5.

Also, it seems possible that in many cases, for example when ductile hole
growth mechanisms are operative at the crack tip, Gé should be related to
Oy and other plastic flow properties, and hence be T dependent if the flow
properties are T dependent. Further, there could then be an indirect T
dependence of Aa, in the sense that the density and thus the spacing of
hole nucleation sites could depend on the general stress levels, which are
proportional to Oy, prevailing very near the crack tip.

CONCLUSIONS

A simple means of resolving the energy balance paradox in elastic/plastic
materials is to base the crack growth criterion on the separation energy
rate G2 defined in relation to a finite growth step Aa. The behavior of
the DBCS strip model in this context agrees well with that of the finite-
element model, and together they provide a rational basis for relating
the J value for grack growth to Gz and Aa in the transitional regime, say
¢ < 0.15. 5till, a defect of the DBCS model is its lack of prediction of
stable crack growth. The approach provides a promising basis for explain-
ing cleavage toughness transitions in materials with temperature-dependent
plastic flow properties, but its applicability to more ductile fracture
mechanisms is not yet much explored. The use of this approach for the
description of stable crack growth in ductile materials (smaill z) also re-
quires further study. Further, it remains an open issue to relate the
parameters Gg and Aa of the model to microscale fracture processes as re-
vealed fractographically.
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