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A ASE OF ELASTO-PLASTIC FLOW USING A NEW SPECIAL ELEMENT

J. L. Swedlow* and M. E. Karabin, Jr.*

ABSTRACT

« new special element for elasto-plastic flow, a nearly square, cen-
2d plate of stmulated A533 steel is analyzed. Selected results
ined locally to the crack’s tip. It is found that a sharp transi-
the distribution of deformation and stress occurs after the initial
response, and that this state is followed by fairly stable behavior
onsiderable portion of the load range. Distribution of strain
density is noted, and implications for use of the parameter J and
tional work are discussed briefly.

ERODUCTION

¢ the last several years, a variety of techniques has been devised for
srical analysis of strain and stress fields in elastic structures, and

+¢ have been several extensions of these techniques to account for non-
srities arising from material behavior and kinematic sources. Without
«ing the literature, we can simply observe that the confluence of the
suter and these techniques has made a broad range of structural problems
sable to economical solution, largely on a routine basis.

t2in exceptions are to be noted; there are problems, typically involving
. sularities in the strain and stress fields, which are not well handled

.+ the computer. Moreover, the degree to which solutions are regarded as
isfactory is dictated largely by the availability of analytic solutions
% are used both in developing specialized numerical techniques and pro-
ng indices of their correctness. An important case is that of the
warp crack.  Straightforward numerical analyses of such problems are
411y evaluated in comparison to Williams's eigenanalysis of the local
in and stress fields [1], and one may only infer the singularities
¢ the computer fails to replicate fully the nature of the local be-

Using the Williams solution, special approaches have also been

{ such that this theoretical response is merely scaled during the
‘ical procedure. Among such approaches is that of Gross and his co-
5 [2] who employed collocation methods, special finite elements
loped by Wilson [3] and Byskov [4] for example, and certain modified
sparametric elements as reported by Henshell and Shaw (5] and Barsoum
¢}, among others. All of these are of course formally limited to planar
siasticity admitting only “small' or infinitesimal strains which, by
aciation, suggests relatively low excitation levels.

- much higher excitation, Williams's solution is sometimes replaced by

t reported independently by Hutchinson [7] and by Rice and Rosengren

. Finite element studies based on this "HRR model' were first reported
- #lilton and Hutchinson [9] and indicate useful and interesting aspects
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of what may be termed fully plastic behavior with, again, the formal limi:
tions of planar deformation and small strains.

These two analytical models have additional features in common. Both per
tain only to fields local to the crack's tip, and each scales in terms of
one parameter, respectively, K and J. Where Williams admits purely elastic
response, however, the HRR model accounts only for plastic behavior; in a
sense these models are then limit cases dual to one another. Missing is
an analysis of the intermediate situation of combined response, or elasto-
plastic fiow. No work we have seen reported addresses the problem between
the two limits which, inferentially, would correspond to high material
toughness on the macroscale. By extension, the literature seems to have
passed by the process whereby material in the immediate vicinity of a crack
tip goes from purely elastic through combined, or elasto-plastic response,
to fully plastic behavior.

Certainly this issue has been contemplated in the context of numerical work
at least as long ago as the First Conference [10]. Missing then and still
to be developed is an analytical base for subsequent computation so that,
for example, the constraints Tracey [11] was obliged to meet are loosened.
It may not be possible, however, to articulate the desired information
analytically; for that reason, we have sought to determine the structure
of crack-tip singularities numerically. The primary points of concern

here thus become the radial and circumferential distribution of deformatics

and stress local to the crack's tip, and how closely to the crack's tip
good data may be obtained. This paper contains certain parts of our first
set of results, and we are able to see more clearly the transition. More~
over, we appear to have some characterization of the local fields rather
close to the crack’s tip for one arbitrarily selected situation. While

a fuller picture must await scrutiny of additional solutions, we believe
it useful to present the following information.

MODELING AND PROBLEM STATEMENT

The formulation is meant to be relatively simple so that we would obviate
potential confusion between the numerics and the information being sought.
It was envisaged that some sort of special element should be embedded in a
field of constant strain elements, with which we have some operating exper-
ience, and that our first analyses would be for problems already solved by
standard means. Thus the special element could eventually be evaluated on
a comparative basis using a number of scales. With this objective in mind,
we envisage the special element as a fan of sectors enclosing the crack tip
(as in Figure la) connected to constant strain, or regular elements. For
each sector, the increment in displacement components is easily written in
terms of polar coordinates centered at the crack's tip (see Figure 1b).
The cartesian components are

Su = (Suo + 2Ar cos 8 + 2Cr sin O + (£ + FO) P cos 0 - {G + teyr! sin 0
(1a)
Sv o= 6Vo + 2Br sin O + 2Dr cos @ + (E + FO)rp sin 8 + (G + He)rq cos ©
and the corrvesponding cylindrical components are

Suy = (Suo cos 6 + GVO sin 6 + (A + B)r + (A - B)r cos 20 + (C + D)r sin 20

+ (B + FO)rP

Sy Su sin O + Sv_ cos O -
o o
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(A - B)r sin 20 - (C - D)r + (C + D)r cos 20

et (1b)

+ (G o+ HOYT
i+ is seen from (1) that (Sug, Svg) are increments of a rigid gguns;it}gn+ -
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want ¥ ) : T ‘ :
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ents p and g. The yes
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of this formulation are to be noted. To avoid intersector

the exponent p and the exponent g are each common tqlgiit
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we note that the algebraic equations resulting
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& t from these matters,
fvom the formulation outlined above
52
KSu = &T (z

= minimum

M = minimum with respect to p and q ~ ﬂe

the entire array of nodal d?splacement
%n#rements Su, &1 is the curr@&ponding vector of v?Qallfotgi itggzmen§;,
and g is the energy-like functiana{ for rhg_bpe?1§§d? 3m21gebraic‘methods;
srder to salve (2), we first solve ho? Su u§1ng:5tdg drw« fv ﬁ ey
;rnrting values for p and q are uﬁeq in eva%uaffég Ei léi;; ngdgi d{ﬁplace"
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wh . K is a stiffness matrix for

a1 analysis). This procedure is oufd shey BEyonC
ji;itdnfo} which p = q = 1/2, and appears to converge rapidly, typically

of eight-noded isoparametric ele~
sectors appear to be needed
expected.

‘A Comparison formulation in the context
ments is being pursued by Marino {15]; fewer

i £ E ar avior is
and better representation ox the angular behavior 1is
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in two cycles of iteration. Of course, the computation
for accommodating local or global (elastic) unloading and other require-
ments for analysis of elasto-plastic flow described earlier [14]. This
iterative scheme is necessary in spite of the simple formulation (1) be-
cause the problem, as posed, is highly non-linear with respect to the ex-
ponents. The formulation presents other operational difficulties in terms

of data reduction, noted below, but we seem now to have found means for
resolving them.

includes provision

The next issue is to select a problem to solve by this method. After
carefully considering a variety of alternatives, we have chosen the problem
reported by Riccardella and Swedlow [16] for a first attempt. This problen,
a center-cracked plate under uniform extension, was originally treated
using constant strain elements alone, and the map was quite refined in the
tip region of the crack (&/a = 1/1024); 474 degrees of freedom were used in
analyzing a quadrant of the plate. 1In the present analysis, the radius of
the special element is designated as 2rq and we have set Te/a = 1/128; the
surrounding mesh is less refined and the problem comprised only 348 degrees
of freedom (plus the two exponentsi). Within the special element, quadra-
ture points are located at r/a ~ 0.0004, 0.002, 0.005, 0.008, 0.011, 0.014,
and 0.015 so that the proximity of data points to the crack's tip in the
two analyses is comparable. Having alternate solutions to the same problem
has proven useful in developing confidence in the present results. While
we have detected no spurious behavior, we had easy access to means for
verifying this. Note, too, that the original solution [16] benefits from
some experimental corroboration.

For completeness, it should be noted that the overall dimensions of the
plate used in both studies, as described [16], are approximately 89 mm
high x 76 mm wide, and the center crack is one-third the plate's width.

The analysis is in plane strain. Loading was imposed via uniform extension
A (as opposed to tension) of the two parallel edges farthest from the crack.
The material is a representation of A533 grade B class 1 low alloy steel;
actual tensile data were used in the computation, except for a smoothing
operation to avoid the measured yield point instability. The specifics of
the present analysis are thus the same as before except that we now use
the special element and considerably fewer degrees of freedom.* We have
adjusted the magnitude of the applied displacement increments to coincide
with those in [16].

RESULTS AND DISCUSSION

A myriad of results pPresents itself, and we report here only those which
provide the information outlined above. Thus we show data mainly for four
load levels:

burely elastic (load step 1, A £ 0.0027 mm)

yield detected just beyond the special element
(load step 38, A 2 ¢0.017 mm)

yisld extends through cross-section (load step 73,
A= 0.091 mm)

FCPU time per load step averaged just under 1.5 minute per increment on a
Univac 1108 (Exec 25 considerably slower than an analysis using only
regular elements. Much of the increase in CPU time is accounted for in
the need to iterate, as described above.
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average applied stress exceeds yield point (load step 93,
A = 0.24 mm)

3 58~ $ ai o re as
in which the yield point is taken from the smoothed stress-strain curve
i W E ¥
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detail remains to be elucidated and reported. Second, the exponents P oani
q in (1) should provide a useful index to the transition. Thus, attention
is turned to variation of exponents as the plate's boundaries are extended

It is a simple matter to plot the exponents p and q through the range of
extension considered here, and the result appears in Figure 7. Note the
rapid drop from starting values of 0.5 and a recovery to about 0.3. It i
also evident that p and q are not significantly different so that, althous
we have allowed for distinct values, future analyses might be expedited bv
equating the two exponents. The early part of the transition, 1:8i5

A < 0.05 mm, may be affected by the modeling process. Note that the ex-
ponents are minimal just as yield goes beyond the special element (step 3#}
and so the details of this phase of loading may be affected by the radial
size of the special element. At gross yield (step 73), however, the yield
ed zone is very large with respect to the special element, and the behavic
of p and q for A > 0.05 mm is viewed as more realistic. Note further that
p and q tend to rise gradually as yield continues beyond step 73; there
seems to be scome additional hardening of the material local to the crack’s
tip.

It is not, however, the quantities p and q that most interest us. Recall-
ing from (1) that these exponents refer explicity to inerements of dis-
placement, we recognize that we need an integral of p and q over the load
path. A look at a good table of integrals is sufficient to convince one
that such quadrature is nontrivial, so that our next task is to establish
exponents - if such exist - for accumulated displacements. That is, we
would hope to find for any given value of the angle 0

pvk

U~y + Bir o4 ypr

- (3)
Vi =~ G2 + Bor + Y,r

and then determine values of p* and gq*. To this end we have examined data
of the form shown in Figures 4a.bh and numerically estimated these exponent
The procedure is based on f tting expressions of the form (3) to the data,
assumes the oy known from rigid motion as in (1b), and maximizes the co-
efficient of determination, typically to 0.99999, to obtain Bis vj, and
the exponents P*.q*. Averaging these values for several but not all sector
leads to the results tabulated:

step p* q*

1 0.4999 0.5002
38 0.3119 0.2463
73 0.2321 0.2404
93 0.2794 0.2982

Close examination of the numerical results of the fit
finite element data reveals the process to be quite able, except perhaps
for some variation at step 38. In order to establish behavior in this
load range, therefore, we need to make further computations for different
values of 2r, (the radial size of the special element). For the present,
however, we see from this and earlier analyses, e.g., [10,16,17], that be-
havior in the immediate vicinity of the crack's tip is described by three
and possibly four stages: an essentially elastic response as described by
Williams [1], a sharp transition, a relatively stable period, and a slow
transition to another state pessibly that described by the HRR model [7,8]
9r possibly something else.

cing of (3) to the

Gy e s* o~ -1,
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egoing procedure may be repeated for st?ains owing tolthelr direct
on to displacements. Hence one could write, for example,
Pl 4)

€.~ B1 * pryar

arry through the necessary calculations. The same‘resuizijii i?g:ﬁed
o ai e v hand, stresses are not so easi .
would obtain. On the othex B . ause the stresses
i 59 4 5 (4) upon which to draw because t
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* integrati - = load path) of stress increments >
- from integration (over the § X S allys In-
- strain increments through the inverse flow rule.

relate to the strain increments ek B wlae Hight
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: 'R s Fer is type of reduction o e stress data,
vs used. We thus defer this t) ! . that The
i . e >sted below. It is noted, however, that
further study as suggested ¢ oy o
'&data evince the succession of stages noted and in particular, th

transition during initial yield.

#in energy density also lacks a formal basis for reduc?ng ;§s r?i;iii

avi : H J F addition, it reflects the sharp -

havior to a simple formula. In a o1, & ! e The e
55 sgree The data in Figure 6, as well as the

to a much lesser degree. The g - well a

'1, imply that W might reasonably be expected to take the form

) oS (s)
W N'WU + er

Fitting the data to (5) by maximizing the %Oefgzil$2§u2£ o
i ‘herofore trie ith limited success. ypic S

srmi -ion was therefore tried, wi C ~ ypas R oy

nl??;izent(were in excess of 0.999, but only in the mid-range

Qe ] €S53

mean values obtained for G0 deg £ 0 < 120 deg were

step s*
1 -0.979
38 ~0.858
73 ~0.975
093 ~1.012

i1e these values of s¥* correspond somewhat to expectat.xonf wiln:ts E&i:ies
s res 2 5T is rging The reason, of course, is tha arries
+ result for step 1 is marginal. ¥ - B L)
inverse square root term in the elastic case, for Whl%h no provision

wade in (5). lHence alternate formulae should be examined.

i - 5 73 @ 9 . spur-
¢ more interest, however is the observation for stegh /at?ndmzé izige g;
¢ : ‘ r ined for © - 180 deg, as opposed to the - 3
results are obtained for © - 1¢& T, i p : e
i that yiel 2 crack's flank is engendered n E
suggesting that yield near the cx — ) : o not se
r;igcrack&itself as by the particular geometry xn_wh}gb Lhzl;lg:¥ ;Ot
sdd 3 e erac 0 <45 deg) s* drops significant.
sdded. Ahead of the crack (0 < : S s ‘ Ik ot
) ] 5, and is led to infer developmen
i sly to small values, and one is led . t > o ik
e o sofar as cont}nuatlmn of elasto-plastic ?low is ?oncclned.
xamin fully the data describing strain energy
basis must be established in ?lace of
do see some if not total consistency

wictive zone 1
i¢ have yet to examine and reduce
density, largely because a proper
i53; no figure is thus sﬁown. We
with the HRR model at this stage.
ihere remains, however, the melic%tion that possxb{Y.f* ;1Z;(gzlgh1c¥olb
consistent with our formulation, given the naturero§‘tx? i oY necéqsary
;hc extent that we are able to cstnbljﬂh_such‘behav1or d?i %oﬁe efféct -
é;pendence on the materia}'s Stress-: 31?~?ui¥9, Eherinlzo;sidering N -
thie path dependence associated with the parameter J. o
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more broz i is ] : .
Eeature:dgéﬁée;zni;azzléhEO EGCP 21 ming Fhat certain, perhaps critical,
arguments in févor ;f’]"% pxésent 3n3}y§15 from those used to develop the
Wrbtseds fir avor of d as a gharacte?121ng parameter. Our formulation
fom an assumed (radial) variation of the displacement increments

and 1  the ac ¢
10T of the accumulated stresses. There is thus the obvious distinctio
E > ious dist: 1

between use of ij i

] uztwgéll?fremgntal (flow) and total (deformation) theories of plas-

Sk méth&d-“ rdo.pgtween finite element and essentially analytical solu;

accummddate:.fai?]thls paper, we treat a particular steel; our technique
o d specific type of stress-plastic strain r 1 )

yet k ‘he " - plastic strain response. e

;peciyoyn whether these factors affect the results and i’lgo i 3E éﬁ not

s 5). " s I e e = E i, At s what re-

further iﬂf;g;;;?udtxon of the work reported here is designed,to provide

this aﬁalysié :'é?n ?Gth by use of alternate numerics [15] and by repéﬂting

- ang S15 witn alternate material repres S & & o

o ) s " - é ; esentations. / OTW

reporting additional findings soon. P ' ? We Took fosward to

CONCLUDING REMARKS

At the expense 4 > ) i i
S Drovéagcgigusirﬁyth F;rwulutlunul detu{l, we have sought in this paper
graékntjp A i SCW-Q 1d’xf}ew approach for examining the structure of
the noosp B F;anw }gxdnqc{4?§0~plast1c material. Primary motivation is
o T st ) E{OLC%S whereby the canons of linear elastic frac-
Phis mode) e;0$3;.%?4§Quondcq, Qnd‘our model is constructed accordingly.
e beﬁgv{og augﬂiegobij(l{f 13'1nt?nded to capture the esse feat-
e lonu it s r..and1;q?rdR¥ :}Exg'bx %gciudlug in the qisplacement
thet presumptins or &) il | At Lhe same time, we have avoided any fur-
Tl o S CSURECLE o ;16‘%u>pon§e, particularly that of the role of materi 1
-5 properly left to the flow rule. o

It is gratifvi C3 1yl g e . N ..
dppeﬂri qii:yxng io}yhberv@ in this first set of results that the procedure
A5 quite workable. In fact we are : 0 elicit def ! ©

e - . fac : are able to elic: deformat i p
stress behavior close to the crack's tip (1073« r/;£ftlggg?rmat;on and
reasonable detail of 1 . e 2 & < T < N and to show
jt&iv woij ?L(dll of the circumferential distribution In ;hiq conmEction
T is we rcal Ak : e 4 L8 st
radial “T%d{in: »?li that the angular pradients of, say, stress exceed the
e sradients to a remarkable degree [19] i Y formulatic e
chis sor S i : y gree (194, which any formulati g
this sort of analysis must take into account. m tatton for

Certain matters sk et aae 3 N -
o numcri;;ta§: ?gnizzzinziwie?x:rg)tur%h:y atientiun. From the standpoint
e s I¥ 28 cledr that P rormalation (1), while containing little
Luctiagt;ggczguizinluﬁf ie?popse. does not lend itself to simple dgtiltgib
RS, éxamblg‘ Of)%f A‘Q}recﬁfcowpurxson of our results to others in
berim Ll de{u{iod” ;2???cnts,.fs ;mpcded. On the other hand, we are
b0 CoTEOl q”Ch.w;T;mca},wphyslcal measurements which might he used
availability Df‘diq)%t-: ?tgrs, It does}xrem, however, that the present
Al mato}ials .;glduimgnt data }ends itself to such comparison for
o e ‘.} S lut.wb woulq‘be interested in collaborating with other
who are able to develop the companion physical data.

It wou > on this basis
yee, féi 22a§$1;hl§0513}b~thﬂt othqr matters are ultimately resolved. We
values of r/a. v&hiljﬁr;?flu?qco of overall goemetry even for very small
think it may be Tcﬁjc‘bxﬁﬁ m?y be an effect assignable to numerics, we
Of greater intéroéi iéntﬁgemzssiﬁ 3?}&C:‘Oq ?y ey ond Carlesen [20],
the difFapenc s B { - Comaterial influence.  As noted above
Rb m;éiilinég.rxgéﬁfsnruuf‘?pproach and rgsults and others - nutnb}t(;;;
written, work is unS;r Q? ann?c nd analytical methodology and, as this is
sEhiowe ba~’w~ n A::AX ?olcurry th? question further. We hope to

sis for definitive resolution of such differences as may bhe

H
i

to exist so that the ut
in serving the more prac
1 materials.
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ility of this and other efforts may find a
tical need of having fracture criteria for

HOWLEDGMENTS

‘uix work was supported by the National Aeronautics and Space Administra-
‘o through NASA Research Grant NGR 39-087-053.

LFERENCES

WILLIAMS, M. L., Journal of Applied Mechanics, 24, 1957, 108-~114.
GROSS, B. E., SRAWLEY, J. W., and BROWN, W. b. Jr., NASA TN D-2395,
1964; GROSS, B. E. and SRAWLEY, J. E., NASA TN D-2603, 1965, NASA

TN D-3092, 1965, and NASA TN D-3295, 1966.

WILSON, W. K., Stress Analvsis and Growth of Cracks, Part 1, STP 513,
American Society for Testing and Materials, Philadelphia, 1972, 90-
105.

BYSKOV., E., International Journal of Fracture Mechanics, 6, 1970,
159-167.

HENSHELL, R. D. and SHAW, K. G., International Journal for Numerical
Methods in Engineering, 9, 1975, 495-507.

BARSOUM, R. $., International .Journal of Fracture, 10, 1974,

603-605.
HUTCHINSON, J. W., Journal of the Mechanics and Physics of Solids,
13, 1968, 13-31.
RICE, J. R. and ROSENGREN, G., Journal of the Mechanics and Physics
of Solids, 13, 1968, 1-12.

acture Mechanics,

3, 1971, 435-451.
SWEDLOW, J. L., WILLIAMS, M. L. and YANG, W. H., Proceedings of the
First International Conference on Fracture, The Japanese Society for
Strength and Fracture of Materials, Japan, 1966, 259-282. See also
HOPKINSON, B., Transactions of the Institution of Naval Architects
(London), 60, 1913, 232-234.

TRACEY, D. M., Ph.D. Dissertation, Brown University, 1973.

SWEDLOW, J. L., Report SM 74-10, Department of Mechanical Engineering,
Carnegie-Mellon University, 1974.
JONES, D. P. and SWEDLOW, J. L.,
11, 1975, 897-914.

SWEDLOW, J. L., Computers and Structures, 3, 1973, 879-898.
MARINO, €., unpublished work, 1976. B

RICCARDELLA, P. C. and SWEDLOW, J. L., Fracture Analysis, S5TP 560,
American Society for Testing and Materials, Philadelphia, 1974,

international Journal of Fracture,

134-154.
LOW, J. L., International Journal of Fracture Mechanics, 5, 1969,

33-44.
BARSOUM, R. 5., International Journal of Fracture, 12, 1976, 445446,

CLAUSING, D. P., private communication, 1968.
LARSSON, S. G., and CARLSSON, A. J., Journal of the Mechanics and
Physics of Solids, 18, 1973, 263-277.

(e
(%23




J.oL. Swedlow and M. E. Karabin

Swedlow and M. E. Karabin

Fracture 1977, Volume 7
Elasto-Plastic Flow

MA.
' 1.5
® ® Step {{elastic),us/A =~0.231
_ S |0 Step 38,u,/A =-0.228
g & O Step 73, ug/A =-0.195
2 A Step93,uy/A=-0.163
P - o i
| 5
~ ©
o X | afpa
) =i 0.5 magé Ugée
T
) = ’:_g:, au vevone ﬁa
e “ *
S o gy oo 4 ,...-93833 ° o‘éa
- . gguﬂ 9,8
Q' 3 L g

O 30 60 90 120150 180
8,deg

Fi
;lguf'e la {\1‘1‘:1_\! of sectors com-
i) sing special element, connected
O regular elements

Figure Za Angular variation of node-point displacements

O < r < 2['& (u~ug) /A at r/a ~ 0.008 for four load steps.

} 91<9<92
8v

Figure Ib A tyng L]
. i Lypic sec .
Speciai elementn cal sector of the % .
———— X U :
3 aff
e -
a
w - 1
(& =)
< o
o 1 2
¢ 3 o
o A
Sy (=)
fy oD
B "]
=] a
- a K000 0
() o o8 p®®®®
P = - o ®
X 08 [}R . OO.‘Q'
3 2 PY
3 8 0 e®
> n Op®
®
go®
(6]
-®
Ohe®™ 1 i | L §
0 30 60 80 120 150180
8,deg
Figure 2b Apngular variation of normalized node~-point

displacements v/A at x/a ~ 0.008 for four
load steps.




J. L. Swedlow and M. E. Karabin

Fracture 1977, Volume 1

®
1o e °
r g [ L4
8 ° °
S+ ®
8 o
® L]
5
8k
(] .
o
7t @
o
w0 o
O . @ ® Step 1t (elastic)
& B o e el
o o ©  Step 38,5 =78 MPq
H s [s] Step 73,5 =368 MFa
\g 51 o] A Step 93,5 =415 MPa
R oy
v\,4~ .
2 a
& %aﬁmﬁmeu & o ©
Ao 4 oa d &
3t (=] o o
& am Fay Q ? .
y J &
5 an A o8 T 0@
- a0t A E 1=}
Ao g b 22 eon
1 5&1& B A g0 a
“ §'D[‘J o
a oa
® 0
)O -t L ) . . s occ\DmA &
30 80 5)9((5) 120 150 180 o,.AijJ
08 o w8 ®
g N 35;038
sl o

66 90 120 50 18
8,deg e

Figure 3a Angular variation of

normalized larger in- inci

oul c;tf;gs é?:;'(%e;tlﬁ/plang grjncxu normalized smaller in-plane princi

: EAEs VASEE: t/a ~ 0.008 for pal s 5 & v Y fozr

e s On/S | L ' pal stress 02/6 at r/a ~ 0.0¢

il steps (interior element four load steps (interior e{eﬁelft?r
values) o '

Figure 3b Angular variation of

“wedlow and M. E.

30 deg
[
Qo

o

»

]

{u-upl/B X102 at 8

-

Figure da

Karabin

Elasto~FPlastic Flow

e Step 1({elastic)
o Step 38
.. o Step 73
L & Step 93
) a a B AR
~ 51
A s 38
@
" 8
o]
@
{ L felvatioliuidll J
i 2 4 10 20
r/a X103

Radial variation of (u-ug)/A at 8 =
90 deg for four load steps

20 5
o a0
3 g ®
2 4ol o
® 10p n
! . 38
@& : 5] @
= al- o ®
o8
=) = »
¥ P2
<1
oo B -
el
i L . bl pitain] i
1 2 4 10 20
t/a X103

Figure 4b

Radial variation of v/A at © -+ 180 deg
for four load steps




J. L. Swedlow and M. E. Karabin f. Swedlow and M. E. Karabin

Elasto~Plastic Flow

o

Fracture 1977, Volume 1

2(‘)’“
®
[} S .
> 10 a8 <}.b1 elastic
b= ? -
(o] " Q [oFe) P o-p
t ®s 0.4 s ®-q
@ 4' [ ® °
an ] £ (o] b4 -4 g I
o @
Ity . 5 aa - Q.3 © Q @ 93
~ ® Step 1 (elastic) ° 8 I
b 2k @ Step 38 5 2 o 8 73
0 Step 73 0.2 o :
A Step 93 n’og- 3
®
1 L L SR i | |
1 2 4 10 20 0.1 38
r/a x 103
(9] J. L 1. 1 ]
Figure . o 0 5 10 15 20 25
igure § adial variation of o,/3 at 0 - 0 deg for four load steps K v x102
Figure 7 Bxponents p and q in equation (1) as extension A
progresses, for every fifth load step
1000} A
400
® Step 1 (elastic)
o4 O Step 38
a
o 200y~ 3 Step 73
& o 4 Step 93
L
5 100 a
o ‘ o
S =
= ®
= .
40Ok o o}
®
i &
0 2
20k L
A8
10 j | B i
1 2 4 . 10 20
r/a X103

Figure 6 Radial variation of normalized strain energy
density Wh/GA at 0 = 90 deg for four load steps

131




